Preparation and Characterization of Ni-Mn/ZrO2-CeO2 Catalysts for Hydrogen Production via Methane Decomposition

Preparation and Characterization of Ni-Mn/ZrO2-CeO2 Catalysts for Hydrogen Production via Methane Decomposition

M.L. Hernandez-PichardoM.A. Valenzuela S.P. Paredes P. del Angel J.A. Montoya de la Fuente 

Instituto Politécnico Nacional-ESIQIE. Laboratorio de Catálisis y Materiales. Zacatenco, 07738, México, D. F.

Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central L. Cárdenas 152, 07730, México, D. F.

Corresponding Author Email: 
mhernandezp@ipn.mx
Page: 
271-275
|
DOI: 
https://doi.org/10.14447/jnmes.v13i3.169
Received: 
9 November 2009
| |
Accepted: 
29 January 2010
| | Citation
Abstract: 

Catalysts with different Ni contents supported on improved ZrO2-CeO2 mixed oxides and doped with manganese as a promoter of activity were evaluated on the catalytic methane decomposition (CMD) at 500 °C for hydrogen and carbon nanostructures production. The supports were synthesized by surfactant-assisted coprecipitation, and Ni and Mn deposition was performed by conventional impregnation. The surface areas for 15N1MZC and 45N1MZC solids prepared with surfactant were 13 and 28 m2/g respectively and it was observed that by incorporating 1% of Mn to the active phase the methane conversion increases. The temperature programmed reduction results indicated that the addition of Mn allows the formation of different NiOx species, increasing the reduction degree to Ni0. The transmission electron microscopy analysis show the formation of different species of carbon as nanotubes, whiskers and onions, as well as an important number of encapsulated Ni particles.

Keywords: 

Hydrogen Production; Catalytic Methane Decomposition; Manganese Promoter

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgments

The authors thank to the Instituto Politecnico Nacional for the financial support granted for the development of this work.

  References

[1] P.K. Cheekatamarla, C.M. Finnerty, J. Power Sources, 160, 490 (2006).

[2] D. Sebastian, I. Suelves, M.J. Lazaro, R. Molinera, J. Power Sources, 192, 51 (2009).

[3] S. Ahmed, A. Aitani, F. Rahman, A. Al-Dawood, F. Al-Muhaish, Appl.Catal. A, 359, 1 (2009).

[4] Suelves, J.L. Pinilla, M.J. Lazaro, R. Moliner, Chem. Eng. J., 140, 432 (2008).

[5] R.M. Navarro, M.A. Peña, J.L.G. Fierro, Chem Rev., 107, 3952 (2007).

[6] W. Dong, K. Jun, H. Roh, Z. Liu, S. Park, Catal. Lett., 78, 215 (2002).

[7] J. Chen, Y. Qiao, Y. Li, Appl. Catal. A, 337, 148 (2008).

[8] S. Kurasawa, S. Iwamoto, M. Inoue, Mol. Cryst. Liq. Cryst., 387, 123 (2002).

[9] T.V. Reshetenko, L.B. Avdeeva, Z.R. Ismagilov, A.L. Chuvilin, V.A. Ushakov, Appl. Catal. A, 247, 51 (2003).

[10] A. Trovarelli, Catal. Rev., 38, 439 (1996).

[11] S.H.S. Zein, A.R. Mohamed, P.S.T. Sai, Ind. Eng. Chem. Res., 43, 4864 (2004).

[12] V.B. Mortola, J.A.C. Ruiz, L.V. Mattos, F.B. Noronha, C.E. Hori, Catal. Today, 133, 906 (2008).

[13] H. Roh, K. Jun, W. Dong, S. Park, Y. Baek, Catal. Lett., 74, 31 (2001).

[14] R. Brown, M.E. Cooper, D.A. Whan, Appl. Catal, 3, 177 (1982).

[15] E.R. Stobbe, B.A. de Boer, J.W. Geus, Catal. Today, 47, 161 (1999).

[16] F. Arena, G. Trunfio, J. Negro, L. Spadaro, Mat. Res. Bull., 43, 539 (2008).

[17] J.A. Montoya, E. Romero-Pascual, C. Gimon, P. Del Angel, A. Monzón, Cat. Today, 63, 71 (2000).

[18] Y. Zhang, K.J. Smith, Catal. Today, 77, 257 (2002).

[19] C.N. He, N.Q. Zhao, X.W. Du, C.S. Shi, J.J. Li, F. He, Mat. Sci. Eng. A-Struct., 479, 248 (2008).

[20] J.W. Snoeck, G.F. Froment, M. Fowlest, J. Catal., 169, 240 (1997).