Electrodeposition of Nickel-Molybdenum Nanoparticles for Their Use as Electrocatalyst for The Hydrogen Evolution Reaction

Electrodeposition of Nickel-Molybdenum Nanoparticles for Their Use as Electrocatalyst for The Hydrogen Evolution Reaction

M. VideaD. Crespo G. Casillas G. Zavala 

Departament of Chemistry, Tecnológico de Monterrey Campus Monterrey, Av. E. Garza Sada 2501, 64849 Monterrey, N.L., México

Departament of Physics, Tecnológico de Monterrey Campus Monterrey, Av. E. Garza Sada 2501, 64849 Monterrey, N.L., México

Corresponding Author Email: 
mvidea@itesm.mx
Page: 
239-244
|
DOI: 
https://doi.org/10.14447/jnmes.v13i3.165
Received: 
11 November 2009
| |
Accepted: 
2 February 2010
| | Citation
Abstract: 

Nickel-Molybdenum nanoparticles are produced using current pulses to electrodeposit alloys from a NiSO4, Na2MoO4 and Na3C6H5O7 electrolytic bath. Glassy carbon discs of 1mm and 2.5mm diameter and carbon felt are used as working electrodes. The electrocatalytic activity of the deposits for Hydrogen Evolution reaction (HER) was evaluated from measurements of the currents obtained when performing cyclic voltammetry experiments on a 0.72 M H2SO4 electrolyte. From Tafel plots a Volmer Heyrovsky mechanism can be in- ferred. The deposits on glassy carbon electrodes were inspected by atomic force microscopy (AFM) revealing particles with diameters between 25 to 120 nm. SEM was used to confirm the electrodeposition of NiMo on carbon felt fibers. At high current density pulses deposits with good catalytic properties for HER are obtained.

Keywords: 

electrocatalysis, NiMo alloys, nanoparticles, HER.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgments

The authors acknowledge the support provided by Tecnológico de Monterrey, Campus Monterrey through CAT-120 funds for the Chair of Nanomaterials and QUI019 and Dr. Sisouk Phrasavath from Arizona State University for the electron micrographs.

  References

[1] N.S. Lewis and D.G. Nocera, PNAS, 103, 15729 (2006).

[2] W. Vielstich; A. Lamm; H.A. Gasteiger, "Handbook of Fuel Cells Fundamentals, Technology and Applications", Volume 2, John Wiley & Sons Ltd., New York, 2005.

[3] S.A. Grigoriev; V.N. Fateev J. Power Sources 245,112 (2008).

[4] S. Martinez, M. Metikos-Hukovic, L. Valek., J. Mol. Catal. A: Chem 245,114 (2006).

[5] L. Sanchez, S. Domingues, C. Marino, L. Mascaro., Electrochem. Comm. 6, 543 (2004).

[6] I.A. Raj; K.I. Vasu J. Applied Electrochem. 20, 32 (1990).

[7] L. Huang, F. Yang, S. Xu, S. Zhou., T. I. Met. Finish. 79, 136 (2001).

[8] R. Schulz; J.Y. Hout; M.L. Trudeau; L. Dignard-Bailey; Z.H. Yan, J. Mater. Res. 9, 2998 (1994).

[9] G. Martínez; G. Zavala; M. Videa J. Mex. Chem. Soc. 53, 7 (2008).

[10] M. Obradovic; R. Stevanovic; A. Despic., J. Electroanal. Chem. 552, 185 (2003).

[11] V.V. Kunznetov; N.V. Morozova; V. Kudryavtsev., Russ. J. Electrochem. 42, 665(2006).

[12] J.G. Highfield, E. Claude, K. Oguro, Electrochim. Acta 44, 2805 (1999).

[13] E. Chassaing, N. Portail, A. Levy, G. Wang., J. Appl. Electrochem. 34, 1085 (2004).

[14] M.P. Zach and R.M. Penner, Adv. Mat., 12, 878 (2000).

[15] M. Donten; H. Cesiulis ; Z. Stojek., Electrochimica Acta 50, 1405 (2005).

[16] J. Crousier, M. Eyraud, J.-P. Crousier, J. Appl. Electrochem. 22, 749 (1992).