Electrochemical Characterization of IrO2-Pt and RuO2-Pt Mixtures as Bifunctional Electrodes for Unitized Regenerative Fuel Cells

Electrochemical Characterization of IrO2-Pt and RuO2-Pt Mixtures as Bifunctional Electrodes for Unitized Regenerative Fuel Cells

I.L. Escalante-García S.M. Duron-TorresJ.C. Cruz L.G. Arriaga-Hurtado 

UACQ-UAZ, CU Siglo XXI-Edificio 6, Km. 6 Carr. Zac.-Gdl., La Escondida, Zacatecas, Zac. C.P. 98160, México

CIDETEQ S.C., Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, Qro. C.P. 76703, México

Corresponding Author Email: 
duronsm@prodigy.net.mx
Page: 
227-233
|
DOI: 
https://doi.org/10.14447/jnmes.v13i3.163
Received: 
19 November 2009
| |
Accepted: 
29 January 2010
| | Citation
Abstract: 

Unitized Regenerative fuel Cell (URFC) is an attractive and efficient method for producing hydrogen and clean energy. Nevertheless, to combine a polymer electrolyte water electrolyzer (PEMWE) and a polymer electrolyte fuel cell (PEMFC) is still a big challenge. Here, it is necessary to overcome several practical and structural features. For instance, the oxygen reduction (ORR) and the water oxidation (OER) are the limiting reaction steps at the oxygen electrode for PEMFC or PEMWE, respectively. Therefore, its high-efficiency depends on the type of electrocatalysts and the capability of the oxygen electrode to operate under the PEMFC or PEMWE conditions. As a consequence, a broad research is focused on developing a new design for the oxygen electrode in URFCs. In this work, several bifunctional electrodes for OER and ORR were designed by mixing electrocatalysts of Pt and IrO2 or Pt and RuO2 supported on Ebonex®. Elec- trochemical characterization by CV, LV and EIS in aqueous 0.5 M H2SO4 reveals that IrO2-Pt and RuO2-Pt supported on Ebonex®, exhibit high electrocatalytic properties for ORR and OER showing up a possible use in URFCs. In addition, IrO2 based electrodes display a higher stability than those based on RuO2.

Keywords: 

URFC, IrO2, RuO2, bifunctional electrodes.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgments

The authors wish to thank the CONACyT FOMIX– Zacatecas (Grant – 81728) and P/PIFI 2007-33-07 for financial support of this work.

  References

[1] M. Momirlan, T. N. Veziroglu, Int. J. Hydrogen Energy, 30, 795 (2005).

[2] F. Barbir, Solar Energy 78, 661 (2005).

[3] A. Marshall, B. Borresen, G. Hagen, M. Tsypkin, R. Tunold, Energy, 32, 431 (2007).

[4] G. Chen, S. R. Bare, T.E. Mallouk, J. Electrochem. Soc. 149, A1092 (2002).

[5] S.D. Yim, W.Y. Lee, Y.G. Yoon, Y.J. Sohn, G.G. Park, T.H. Yang, Ch. S. Kim, Electrochim. Acta, 50, 713 (2004).

[6] S.Song, H.Zhang, X.Ma, Z.Shao, Int. J. Hydrogen Energy, 33, 4955 (2008).

[7] Y. Zhang, Ch. Wang, N. Wan, Z. Mao, Int. J. Hydrogen Energy, 32, 400 (2007).

[8] L.M. Vra?ar, N.V. Krstaji?, V.R. Radmilovi?, M.M. Jakši?, J. Electroanal. Chem., 587, 99 (2006).

[9] S. Fierro, T. Nagel, H. Baltruschat, Ch. Comninellis, Electrochem. Comm., 9, 1969 (2007).

[10] L.Ma, S. Sui, Y. Zhai, J. Power Sources 177, 470 (2008).

[11] T. Ioroi, N. Kitazawa, K Yasuda, Y. Yamamoto and H. Takenaka, J. Electrochem. Soc., 147, 2018 (2000).

[12] V. Rashkova, S. Kitova, T. Vitanov, Electochim. Acta., 52, 3794 (2007).

[13] J. Perez, E.R. Gonzalez, E.A. Ticianelli, J. Electrochem Soc., 145, 2307 (1998).

[14] K. Darowicki, J. Orlikowski, J. Electrochem. Soc., 146, 663 (1999).

[15] K.C. Neyerlin, G. Bugosh, R. Forgie, Z. Liu, P. Strassera, J. Electrochem. Soc., 150, 3, E363 (2003).

[16] G. Chen, C.C. Waraksa, H. Cho, D.D. Macdonalk, T.E. Mallouk, J. Electrochem. Soc., 150, 9, E423 (2003).

[17] C. D’Urso, L. Morales, A. Di Blasi, V. Baglio, R. Ornelas, G. Orozco, L.G. Arriaga, V. Antonucci, A.S. Arico, ECS Trans., 11, 1, 191(2007).

[18] J. Kaiser, P. A. Simonov, V. I. Saikovskii, C. Hartnig, L. Jörissen, E.R. Savinova, J. Appl. Electrochem., 37, 1429 (2007).

[19] G.R. Dieckmann, S.H. Langer, Electrochim. Acta, 44, 437 (1998).

[20] S.Y. Park, S.I. Mho, E.O. Chi, Y.u. Kwon, H.L. Park, Thin solid Films, 258, 5 (1998).

[21] J.C. Cruz-Argüelles, M. Sc. Thesis, CIDETEQ S. C. June 2009, Querétaro, México.

[22] A Di Blasi, C. D’Urso, V. Baglio, V. Antonucci, A.S. Aricó, R. Ornelas, F. Mateucci, G. Orozco, D. Beltran, Y. Meas, L.G. Arriaga, J. Appl. Electrochem., 39, 191 (2009).

[23] S.K. Nataraan, J. Hamelin, Electrochim. Acta, 52, 3751 (2007).

[24] M.H.P. Santana, L.A. de Faria, J.F.C. Boodts, J. Appl. Electrochem., 35, 915 (2005).

[25] J. Jirkovský, H. Hoffmannová, M. Klementová, P. Krtila, J. Electrochem. Soc., 153, E111 (2006).

[26] Cyclic voltametry, W. Vielstich in Handbook of Fuell Cell: Fundamentals, Techology and Applicattions, Edited by W. Vielstich, H.A. Gaisteger, A. Lamm. Vol. 2: Electrocatalysis, USA (2003) p. 153.

[27] I.L. Escalante-García, S.M. Durón-Torres, J.C. Cruz y Arriaga-Hurtado L.G., Proceedings of the XXIV meeting of the Mexican Society of Electrochemistry, Paper 105, Puerto Vallarta, Jal, México, May 31 – June 5, 2009.

[28] J.M. Hu J.Q. Zhang, Ch.N. Cao, Int. J. Hydrogen Energy, 29, 791 (2004).

[29] V.V. Kuznetsov, S.A. Chepeleva, M.M. Goldin, V.N. Kudryavtsev, V.N. Fateev, A.G. Volkov, Russian J. of Electrochem. 41, 9, 933 (2005).

[30] C.A. Ramos-Velasco, S.M. Durón-Torres, P.Ibarra-Castro, Proceedings of the XXIII meeting of the Mexican Society of Electrochemistry, Paper 58, Ensenada, B.C., México (2008).

[31] C.A. Ramos-Velasco, M. Galván-Valencia, S.M. Durón-Torres, ECS Trans., 15, 1, 17 (2008).