A New Design Improves Performance of a Single Chamber Microbial Fuel Cell

A New Design Improves Performance of a Single Chamber Microbial Fuel Cell

A.L. Vazquez-Larios O. Solorza-Feria G. Vazquez-Huerta F. Esparza-Garcia E. Rios-Leal N. Rinderknecht-Seijas H.M. Poggi-Varaldo

Environmental Biotechnology and Renewable Energies R&D Group, Dept. Biotechnology & Bioengineering, Centro de Investigación y de Estudios Avanzados del I.P.N., P.O. Box 14-740, México D.F. 07000, México.

Dept. of Chemistry, Centro de Investigación y de Estudios Avanzados del I.P.N. Mexico.

ESIQIE del IPN, División de Ciencias Básicas, México D.F., México.

Corresponding Author Email: 
hectorpoggi2001@gmail.com
Page: 
219-226
|
DOI: 
https://doi.org/10.14447/jnmes.v13i3.162
Received: 
22 November 2009
| |
Accepted: 
28 January 2010
| | Citation
Abstract: 

A new design of MFC (MFC-A) whose main features were the assemblage or sandwich’ arrangement of the anode-PEM-cathode and the extended surface area of electrodes (higher electrode surface to cell volume ratio, ξ) exhibited a performance significantly superior to that of a similar cell (MFC-B, standard cell) where the electrodes were separated. The characterization experiments showed that the new design lead to a significant 70% reduction of cell internal resistance (Rint) compared to the standard cell. During the batch operation of the cells loaded with a model extract typical of hydrogenogenic fermentation of organic solid wastes and a sulphate-reducing inoculum, the maximum, open circuit potentials were 0.5 and 0.3 V whereas the average voltages were 0.21 y 0.18 V for MFC-A and MFC-B, respectively. Maximum volumetric power PV and anode density power PAn of the MFC-A were superior to those of the MFC-B by factors of 13.2 and 8.4, respectively. The experimental improvement factor was almost double of the expected (algebraic) factor 6.5. The PV of the MFC-A (922 mW/m3) was in the middle to high side of the range of PV reported in the literature whereas PAn was in the low range of pub- lished results (38.4 mW/m2). Finally, this work points out to the usefulness of the approach of increasing x and reducing Rint for improving MFC performance.

Keywords: 

microbial fuel cell; batch tests; electricity production; internal resistance; leachate; ratio surface area to volume; solid waste; sandwich electrode

1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusion
Acknowledgments

CINVESTAV-IPN, Mexico, provided partial financial support to this research. ALV-L received a graduate scholarship from CONACYT, Mexico. NR-S acknolwedges support from COFAA-IPN. The excellent help with chromatographic analysis of Mr. Cirino Rojas of Central Analítica, Dept. Biotechnology and Bioengineering , CINVESTAV del IPN, and the technical assistance of personnel of the Environmental Biotechnology and Renewable Energy R&D Group and the Fuel Cell and Hydrogen Group of CINVESTAV is gratefully acknowledged.

  References

[1] J.R. McNeill, “Something New Under the Sun: An Environmental History of the Twentieth Century World.” W.W. Norton and Company, New York, NY, 2002.

[2] A. Bullen, T.C. Arnot, J.B. Lakeman, F.C.Walsh, Biosens. Bioelectron., 21, 2015 (2006).

[3] S. Dunn, Int. J. Hydrogen Energy, 27, 235 (2002).

[4] D. Das, T.N. Veziroglu, Int. J. Hydrogen Energy. 26, 13 (2001).

[5] C. Elam, C. Gregoire, G. Sandrock, A. Luzzic, P. Lindbladd, E. F. Hagen, Int. J. Hydrogen Energy, 28, 60 (2003).

[6] R. Wünschiers and P. Lindblad, Int. J. Hydrogen Energy, 27, 1131 (2002).

[7] K.M. Muñoz-Páez, J. García-Mena, H.M. Poggi-Varaldo in “Proceedings of the 5th International Symposium on Anaerobic Digestion of Solid Wastes and Energy Crops”, Eds. M. Hamdi, F. Cecchi, J. Mata-Alvarez Hammamet, Tunisia May 25-28, 2008, p.105.

[8] Valdez-Vazquez, E. Ríos-Leal, F. Esparza-García, F. Cecchi, H.M. Poggi-Varaldo, Int. J. Hydrogen Energy, 30, 1383 (2005).

[9] Valdez-Vazquez, H.M. Poggi-Varaldo, Renewable and Sustainable Energy Reviews, 13(5), 1000 (2009).

[10] H.M. Poggi-Varaldo, Biohydrogen and sustainable development for large cities in “Proceedings of the First nternational Congress on Biotechnology and Bioengineering”, Eds. J. Barrera-Cortés, H.M. Poggi-Varaldo México D.F., México, Nov. 5-7, 2008, p.1, Book in CD-ROM ISBN 978-607-95065-0-6.

[11] B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Environ. Sci .Technol., 40, 5181 (2006).

[12] H. Rismani-Yazdi, S.M. Carver, A.D. Christy, O.H. Tuovinen, J. Power Sources, 180, 683 (2008).

[13] G.M. Barrow, “Physical Chemistry” 3rd edn., McGraw-Hill Book Co., New York, USA, 1973, p. 670.

[14] Z. Du, H. Li, T. Gu, Biotechnol. Adv., 25, 464 (2007).

[15] A.J. Appleby, F.R. Fouldes, “Fuel Cell Handbook”, van Nostrand-Reinhold, New York, USA, 1989.

[16] R. O’Hayre, S.-W. Cha,W. Colella, F.B. Prinz, “Fuel Cell Fundamentals”, John Wiley & Sons, New York, USA, 2005, p. 409.

[17] G.W. Castellan, “Physical Chemistry”, Addison-Wesley Publ. Co., Reading, MA, USA,1966. p. 581.

[18] Y.Z. Fan, H.Q. Hu, H. Liu, J. Power Sources, 171, 348 (2007).

[19] J.K. Jang, T.H. Pham, I.S. Chang, K.H. Kang, H. Moon, K.S. Cho, B.H. Kim, Process Biochem., 39, 1007 (2004).

[20] J.R. Kim, S. Cheng, S.E. Oh, B.E. Logan, Environ. Sci. Technol., 41, 1004 (2007).

[21] T. Song, Y. Xu, Y. Ye, Y. Chen and S. Shen, J. Chem. Technol. Biotechnol., 84, 356 (2008).

[22] H. Liu, S.A. Cheng, B.E. Logan, Environ. Sci. Technol., 39, 5488 (2005).

[23] B.R. Ringeisen, E. Henderson, P.K. Wu, J. Pietron, R. Ray, B. Little, J.C. Biffinger, J.M. Jones-Meehan, Environ. Sci. Technol. 40, 2629 (2006).

[24] T.H. Pham, J.K. Jang, H.S. Moon, I.S. Chang, B.H. Kim, J.Microbiol. Biotechnol., 15, 438 (2005).

[25] J.C. Biffinger, J. Pietron, R. Ray, B. Little, B.R. Ringeisen, Biosens. Bioelectron., 22, 1672 (2007).

[26] P. Liang, X. Huang, M.Z. Fan, X.X. Cao, C. Wang, Appl. Microbiol. Biotechnol., 77, 551 (2007).

[27] D.Q. Jian, B.K. Li. Water Sci. Technol., 59(3), 557 (2009).

[28] H. M. Poggi-Varaldo, A. Carmona Martínez, A. L. Vázquez-Larios and O. Solorza-Feria, J. New Mat. Electrochem. Systems., 1, 49 (2009).

[29] Valdez-Vazquez, E. Ríos-Leal, A. Carmona-Martínez, K. Muñoz-Páez, H. Poggi-Varaldo, Environ. Sci. Technol., 40, 3409 (2005).

[30] H.M. Poggi-Varaldo, L. Valdés, F. Esparza-García, G. Fernandéz-Villagómez, Water Sci. Technol., 35 (2/3), 197 (1997).

[31] R. Sparling, D. Risbey, H. Poggi-Varaldo, Int. J. Hydrogen Energy, 22, 563 (1997).

[32] D. Halliday, R. Resnick, J. Walker, “Fundamentals of Physics”, 7th ed. John Wiley & Sons Co., New York, USA, 2004.

[33] P. Clauwaert, K. Rabaey, P.Aelterman, L. De Schamphelaire, T.H. Pham, P. Boeckx, N. Boon, W. Verstraete, Environ. Sci. Technol., 41, 3354 (2007).

[34] APHA, “Standard Methods for the Examination of Water and Wastewater”, 17th edn., American Public Health Association, Washington DC, USA, 1989.

[35] I.V. Robles-González, E. Ríos-Leal, R. Ferrera-Cerrato, F. Esparza-García, N. Rinderknecht-Seijas, H.M. Poggi-Varaldo, Process Biochem., 41, 1951 (2006).

[36] B. Min, J Kima, S. Oha, J. M. Regana, B. E. Logan, Water Res., 39, 4961 (2005).

[37] B. Min, O.B. Román, I. Angelidaki, Biotechnol Lett., 30, 1213 (2008).

[38] H. Liu and B.E. Logan, Environ. Sci. Technol., 38, 4040 (2004).

[39] X. Wang, Y.J. Feng and H. Lee, Water Sci. Technol., 57, 1117 (2008).

[40] S. Cheng, B. Logan, Electrochem. Commun., 9, 492 (2007).

[41] S-E. Oh, B.E. Logan. Appl. Microbiol. Biotechnol., 70, 162 (2006).

[42] S. Cheng, H. Liu, B.E. Logan. Electrochem. Commun., 8, 489 (2006).

[43] H.J. Kim, H.S. Park, M.S. Hyun, I.S. Chang, M. Kim, B.H. Kim, Enzyme Microb. Technol., 30, 145 (2002).

[44] D.R. Bond, D.R. Lovley, Appl. Environ. Microbiol., 69, 1548 (2003).

[45] G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen, D.R. Lovley, Nature, 435, 1098 (2005).

[46] H. Liu, R. Ramnarayanan, B.E. Logan, Environ. Sci. Technol., 38, 2281 (2004).

[47] Z. He, S.D. Minteer, L.T. Angenent, Environ. Sci. Technol., 39, 5262 (2005).

[48] J. Kim, B. Min, B.E. Logan, Appl. Microbiol. Biotechnol,. 68, 23 (2005).

[49] H. Liu, C. Shaoan, B.E. Logan, Environ. Sci. Technol,. 39, 5488 (2005).

[50] H. Liu, C. Shaoan, B.E. Logan, Environ. Sci. Technol., 39, 658 (2005).