Oxygen Reduction Reaction on Pt/C Catalysts Prepared by Impregnation and Liquid Phase Photo-Deposition

Oxygen Reduction Reaction on Pt/C Catalysts Prepared by Impregnation and Liquid Phase Photo-Deposition

B. Ruiz-Camacho M. A. Valenzuela J. A. Perez-Galindo F. Pola M. Miki-Yoshida N. Alonso-Vante R. G. Gonzalez-Huerta

Laboratorio de Catálisis y Materiales, ESIQIE-Instituto Politécnico Nacional, 07738, México D.F.

Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, 31109, Chihuahua, Chih., México

Laboratoire d’Electrocatalyse, UMR-CNRS 6503, Université de Poitiers, F-86022 Poitiers, France

Corresponding Author Email: 
rosgonzalez_h@yahoo.com.mx
Page: 
183-189
|
DOI: 
https://doi.org/10.14447/jnmes.v13i3.148
Received: 
20 November 2009
| |
Accepted: 
27 January 2010
| | Citation
Abstract: 

Pt/C catalysts supported on carbon (5 wt.% Pt) synthesized by photo-deposition and impregnation methods were electrochemi- cally evaluated in the oxygen reduction reaction. Platinum nanoparticles were prepared by photo-irradiation of Pt precursors (H2PtCl6 and C10H14O4Pt) with UV-irradiation (365 nm) at room temperature. The photo-reduction of H2PtCl6 to metallic platinum (Pt4+→Pt2+→Pt0) was faster than C10H14O4Pt (Pt2+→Pt0) at the same operation conditions. The Pt/C samples were characterized by XRD, EDS, H2 chemisorption, TEM, cyclic and linear voltammetry techniques. XRD and TEM/EDS studies showed that Pt particles synthesized with C10H14O4Pt by the photo-deposition method were smaller with a higher dispersion on carbon than those prepared with H2PtCl6. A similar behavior was found when the impregnation method is used. The platinum particle size was smaller with C10H14O4Pt as compared to H2PtCl6 precursor. The Pt/C catalyst synthesized with C10H14O4Pt by the photo-deposition method displayed a catalytic activity in the oxy- gen reduction reaction comparable to a commercial 10 wt. % Pt/C, ETEK catalyst.

Keywords: 

Platinum nanoparticles, Liquid photo-deposition, Impregnation, Oxygen reduction.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgments

The authors are grateful to the ESIQIE-IPN, the scholarship program PIFI and CONACyT, ICYTDF (Grant PICS08-37), and SIP (20090433, 20091157) and Nanotech-CIMAV (Carlos Ornelas).

  References

[1] W. Vielstich, H. Gasteiger, A. Lamm, “Handbook of Fuel Cells-Fundamentals Technology and Applications”, WILEY, United States, 2003.

[2] J.H. Wee, K.Y. Lee, S.H. Kim, J. Power Sources, 165, 667 (2007).

[3] T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki, K. Yasuda, Electrochem. Comm., 7, 183 (2005).

[4] E. Antolini, Appl. Catal. B: Environ., 88, 1 (2009).

[5] K.A. Starz, E. Auer, Th. Lehmann, R. Zuber, J. Power Sources, 84, 167 (1999).

[6] W. Jung Ho, L. Kwan Young, K. Sung Hyun, J. Power Sources, 165, 667 (2007).

[7] E. Antolini, E.R. Gonzalez, Solid State Ionics, 180, 746 (2009).

[8] S. Zhang, X. Yuan, H. Wang, W. Mérida, H. Zhu, J. Zhen, S. Wu, J. Zhang, Int. J. Hydrogen Energy, 34, 388 (2009).

[9] S. Zhang, X.Z. Yuan, J.N. Cheng Hin, H. Wang, K.A. Friedrich, M. Schulze, J. Power Sources, 194, 588 (2009).

[10] O. Hyung-Suk, K.H. Lim, B. Roh, I. Hwang, H. Kim, Electrochim. Acta, 54, 6515 (2009).

[11] John Regalbuto, “Catalyst Preparation Science and Engineering”, CRC Press, Taylor and Francis Group, New York, 2007.

[12] A. Peled, “Photo-Excited Processes, Diagnostics and Applications”, Kluwer Academic Publishers, New York, 2003.

[13] C. Crisafulli, S. Scirè, S. Giuffrida, G. Ventimiglia, R. Nigro, Appl. Catal. A: General, 306, 51 (2006).

[14] M.R. Brook, K.I. Grandberg, G.A. Shafeev, Appl. Phys. A, 52, 78 (1991).

[15] B. Ruiz Camacho R.G. González Huerta, M.A. Valenzuela, Top. Catal., in press (2010).

[16] H. Einaga, M. Harada, Langmuir, 21, 2578 (2005).

[17] M. Harada, H. Einaga, Langmuir, 22, 2371 (2006).

[18] C. Tao, W. Guo-peng, F. Zhao-chi, M. Gui-jun, Y. Pin-liang, J. Chemi. Phys. 20, 483 (2007).

[19] B. Li, S. Kado, Y. Mukainakano, T. Miyazawa, T. Miyao, S. Naito, K. Okumura, K. Kunimori, K.i Tomishige, Journal of Catal., 245, 144 (2007).

[20] B.D. Cullity, “X-Ray Diffraction”, Addison-Wesley, USA, 1967.

[21] J. Murayama, I. Abe, Electrochim. Acta, 48, 1443 (2003).

[22] A.J. Bard, L.R. Faulkner, “Electrochemical Methods: Fundamentals and Applications”, John Wiley & Sons, New York, 1985.