Syntghesis and Cheracterization of PdAg Nanoparticles as Oxygen Electrocatalyst in Acidic Medium

Syntghesis and Cheracterization of PdAg Nanoparticles as Oxygen Electrocatalyst in Acidic Medium

Diana C. Martínez-Casillas Gerardo Vazquez-HuertaJuan F. Perez-Robles Omar Solorza-Feria 

Departamento de Química. Centro de Investigación y de Estudios Avanzados del IPN 2508, C.P.07360, México D.F., México

Departamento de Materiales. CINVESTAV- IPN. Unidad Querétaro, Querétaro, México

Corresponding Author Email: 
gervazkez@gmail.com
Page: 
163-169
|
DOI: 
https://doi.org/10.14447/jnmes.v13i3.145
Received: 
19 November 2009
| |
Accepted: 
29 January 2010
| | Citation
Abstract: 

PdAg electrocatalyst was prepared following two different methods, i.e. borohydride reduction of metallic ions and sonochemistry. X-ray diffraction (XRD) and transmission electron microscopy (TEM) characterizations indicate the formation of crystalline PdAg particles with an average particle size of 10 nm from chemical reduction, and 12 nm from sonochemistry. The electrocatalytic activity of PdAg, for the oxygen reduction reaction (ORR) was characterized using cyclic voltammetry (CV), rotating disk electrode (RDE) and electrochemical impedance spectroscopy (EIS), in 0.5M H2SO4. Mass-transfered-corrected Tafel plots show an enhancement of the electrocatalytic activity associated to the incorporation of silver to palladium. EIS diagrams of PdAg electrocatalyst present one or two time constants depending on the electrode potential, E. The E at which appears the second time constant depends on the method of catalyst preparation. The difference in E was attributed to the different crystalline percentage due to the catalyst preparation method.

Keywords: 

PdAg Electrocatalyst; Oxygen Reduction Reaction; Impedance Spectroscopy.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgments

This research project was partially supported by a Grant of National Science and Technology Council of Mexico, CONACYT (Ref. 83247) and by the Mexico City Science and Technology Institute, ICYTDF (OSF). DCMC thanks to CONACYT for doctoral fellowship. GVH thanks the financial support from CONACYT through a postdoctoral grant. The authors acknowledge to Juan Antonio Jimenez, Carlos Flores and Dr. José Chavez for the technical assistance in XRD and TEM measurements.

  References

[1] K. Okitsu, Y. Mizukoshi and H. Bandow, Ultrason. Sonochem., 3, S249 (1996).

[2] R. A. Salkar, P. Jeevanandam and S.T. Aruna, Langmuir, 15, 2733 (1996).

[3] T. Fujimoto, S. Terauchi and H. Umehara, Chem. Mater., 13, 1057 (2001).

[4] R. Oshima, T.A. Yamamoto and Y. Mizukoshi, Nanostruct. Mater., 12, 111(1999).

[5] M. Gustavsson, H. Ekstroem, P. Hanarp, G. Lindbergh, E. Olsson and B. Kasemo, J. Power Sources, 163, 671 (2007).

[6] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Applied Catalysis: environmental 56, 9 (2005).

[7] J.J. Salvador-Pascual, S. Citalán-Cigarroa, O. Solorza-Feria, J. Power Sources, 172, 229 (2007).

[8] C. Xu, Y. Zhang, L. Wang, L, Xu, X, Bian, H. Ma and Y. Ding, Chem. Mater., 21, 3110 (2009).

[9] J.L. Fernández, D.A. Walsh, A.J. Bard, J. Am. Chem. Soc., 127, 357 (2005).

[10] K. Suárez-Alcántara, O. Solorza-Feria, Fuel Cells, in press 2009.

[11] K. Lee, O. Savadogo, A. Ishihara, S. Mitsushima, N. Kamiya and K.-I. Ota, J. Electrochem. Soc., 153, A20 (2006).

[12] M. Shao, P. Liu, J. Zhang and R. Adzic, J. Phys. Chem.B, 111, 6772 (2007).

[13] G. Ramos-Sánchez, H. Yee-Madeira, O. Solorza-Feria, Int. J. Hydrogen Energy, 33, 3596 (2008).

[14] R.G. González-Huerta, A. Chávez-Carvayar and O. Solorza-Feria, J. Power Sources, 153, 11 (2006).

[15] Allen J. Bard and Larry R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edition, John Wiley & Sons, Inc., USA, 2001.

[16] E. Yeager, Electrochimica Acta, 92, 1527 (1984).

[17] K. Suárez-Alcántara, O. Solorza-Feria, J. Power Sources, 192, 165 (2009).

[18] H. Liu, A. Manthiram, Energy and Environmental Science, 2, 124 (2009).

[19] C.M. Sanchez-Sánchez, A.J. Bard. Anal. Chem., 81, 8094 (2009).

[20] K. Kinoshita, Electrochemical Oxygen Technology, Wiley-Interscience Publication, New York, (1992).

[21] L. Zhang, K. Lee, J. Zhang, Electrochim Acta, 52, 3088 (2007).

[22] Bernard A. Boukamp. Solid State Ionics, 20, 31 (1986).