Electrochemical Evaluation of Electrocatalysts for Fuel Cell Applications: A Practical Approach

Electrochemical Evaluation of Electrocatalysts for Fuel Cell Applications: A Practical Approach

Mohammed H. AtwanElod L. Gyenge Derek O. Northwood

General Motors R&D Technical Center (for Trison Engineering), Warren, MI 48090, USA

Chemical and Biological Eng., The University of British Colombia, Vancouver, BC, V6T 1Z4, Canada

Mechanical, Auto, and Materials Eng., University of Windsor, Windsor, N9B 3P4, Canada

Corresponding Author Email: 
dnorthwo@uwindsor.ca; mohammed. atwan@gm.com
29 July 2009
4 August 2009
4 August 2009
| Citation

The application of various electrochemical techniques to evaluate the activity of supported nano-size electrocatalysts for the oxidation of a specific fuel for fuel cell applications is examined. Cyclic voltammetry (CV) on both static and dynamic (rotating disc electrode, RDE) electrodes, and fuel cell station tests were the main electrochemical techniques used in this study. It was found from both static and dynamic CV and the fuel cell station tests that the most active catalyst is the one that shows the most negative oxidation peak potential. According to the Tafel equation, a lower anodic/cathodic overpotential is clear evidence of higher catalytic activity. This can be achieved for a specific current load by an electrocatalyst that exhibits as low a Tafel slope, and as high an exchange current density, as possible. RDE and fuel cell station tests show that the best performance was recorded for those electrocatalysts which have values of the Tafel slope (ba) and the exchange current density (io) that, on balance, give rise to the lowest overpotential. Therefore, CV and RDE are the recommended electrochemical techniques for a reliable assessment of electrocatalysts prior to performing a “real” fuel cell test.


electrocatalysts, fuel cells, electrochemical.

1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions

The authors would like to thank the Natural Resources and Engineering Research Council of Canada for their financial support of this work. They would also like to thank Dr. Charles Macdonald (Department of Chemistry and Biochemistry, University of Windsor) for provision of laboratory facilities and assistance with the preparation of the colloidal electrocatalysts.


[1] J. Wang. Analytical Electrochemistry, Wiley-VCH, New York (2000) 1-27.

[2] C. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Wiley-VCH, New York (1998) 217-274.

[3] B. Rossiter, J. Hamilton, Physical Methods of Chemistry, John Wiley, New York (1998) 1-50.

[4] A. Brad, M. Mirkin, Scanning Electrochemical Microscopy, Marcel Dekker, New York (2001).

[5] E. Smotkin, R. Diaz-Morales, Ann. Rev. Mater. Res., 33 (2003) 557-579.

[6] R. Jiang, D. Chu, J. Elect. Chemistry, 527 (2002) 137-142.

[7] E. Reddington, A. Sapienza, B. Gurau, R. Viswantha, S. Sarangapani, E. Smotkin, T. Mallouk, Science, 280, 12 (1998) 1735-1737.

[8] E. Gileadi, Electrode Kinetics for Chemists, Chemical Engineers, and Materials Scientists, VCH, NY (1993) 179-183.

[9] S. H. Jordanov, P. Paunovic. O. Popovski, A. Dimitrov, D. Slavkov, Bull. Chem. Tech. of Macedonia, 23 (2) (2004) 101-112.

[10] R. Greef, R. Peat, L. Peter, D. Pletcher, J. Robinson, Instrumental Methods in Electrochemistry, John Wiley, New York (1985)229-250.

[11] J. Newman, Electrochemical Systems, Prentice Hall, New York (1991) 454-495.

[12] M. Perry, J. Newman, E. Cairns, J. Electrochem. Soc., 145, 5 (1998).

[13] J. O’M Bockris, S. Khan, Surface Electrochemistry: A Molecular Approach, Plenum Press, New York (1993) 280-283, 621.

[14] M. Janssen, J. Moolhuysen, Electrochimica Acta, 21 (1976) 869-878.

[15] B. McNicol, R. Short, Electoanal. Chem., 81 (1977) 249-260.

[16] A. Aramata, R. Ohnishi, J. Electroanal., Chem., 162 (1984) 153-162.

[17] Aramata, T. Kodera, M. Masuda, J. Applied Electrochem, 18 (1988) 577-582.

[18] S. Swathiranjan, Y. Mihkail, J. Electrochem. Soc., 138, 5 (1991) 1321-1326.

[19] A. Parthasarathy, C. Martin, J. Electrochem. Soc., 138, 4 (1991) 916-921.

[20] F. Uribe, T. Springer, S. Gottesfeld, J. Electrochem. Soc., 139, 3 (1992) 765-773.

[21] A. Parthasarathy, S. Srinivasan, A. Appleby, J. Electroanal., Chem., 339 (1992) 101-121.

[22] S. Mukerjef, S. Srinivasan, J. Appleby, Electrochimica Acta, 38, 12 (1993)1661-1669

[23] L. Burke, J. Casey, J. Morrissey, J. O’Sullivan, J. Applied Electrochem, 24 (1994) 30-37.

[24] P. Biswas, Y. Nodasaka, M. Enoy, J. Applied Electrochem, 26 (1996) 30-35.

[25] P. Kauranen, E. Skou, J. Munk, J. Electroanal., Chem., 404 (1996) 1-13.

[26] T. Schmidt, M. Noeske, H. Gasteiger, R. Behm, Langmuir, 13, 10 (1997)2591-2595.

[27] G. Lalande, R. Cote, D. Guay, J. Dodelet, L. Weng, P. Bertrand, Electrochimica Acta, 42, 9 (1997) 1397-1388.

[28] G. Faubert, R. Cote, D. Guay, J. Dodelet, G. Denes, C. Poleunis, P. Bertrand, Electrochimica Acta, 43, 14-15 (1998) 1969-1984.

[29] R. Cote, G. Lalande, G. Faubert, D. Guay, J. Dodelet, G. Denes, J. New Mat. Electrochemical Systems 1, 7 (1998) 7-16.

[30] T. Schmidt, H. Gasteiger, G. Stab, P. Urban, D. Kolb, R. Behm, J. Elecrochem. Soc., 145, 7 (1998) 2354-2358.

[31] S. Gojkovic, S. Gupta, R. Savinell, Electrochimica Acta, 45 (1999) 889-897.

[32] A. Pozio, L. Giorgi, E. Antolini, E. Passalacqua, Electrochimica Acta, 46 (2000) 555-561.

[33] R. Monaharan, J. Prabhuram, J. Power Sources, 96 (2001) 220-225.

[34] U. Paulus, T. Schmidt, H. Gasteiger, R. Behm, J. Electroanal. Chem., 495 (2001) 134-145.

[35] D. Chu, R. Jiang, Solid State Ionics, 148 (2002) 591-599.

[36] S-J. Shin, J-K., Lee, H-Y. Ha, S-A., Hong, H-S. Chun, I-H., Oh, J. Power Sources, 106 (2002) 146-152.

[37] Rice, S. Ha, R.I. Masel, A. Wieckowski, Journal of Power Sources, 115 (2003) 229–235.

[38] J. Solla-Gullón, A. Rodes, V. Montiel, A. Aldaz and J. Clavilier, J. Electroanalytical Chemistry, 554-555 (15) (2003) 273-284.

[39] E. Gyenge, Electrochim. Acta 49 (2004) 965 and 49 (2004)1875.

[40] Dao-Jun Guo, Hu-lin Li, Electrochemistry Communications, 6 (2004) 999–1003.

[41] J.D. Lovic´, A.V. Tripkovic´, S.Lj. Gojkovic´, K.Dj. Popovic´, D.V. Tripkovic´, P. Olszewski, A. Kowal, Journal of Electroanalytical Chemistry, 581 (2005) 294–302.

[42] Mohammed H. Atwan, Derek O. Northwood, Elod L. Gyenge, Int. J. Hydrogen Energy, 30 (12) (2005)1323-1331.

[43] R.T.S. Oliveira, M.C. Santos, B.G. Marcussi, S.T. Tanimoto, L.O.S. Bulhoes, E.C. Pereira, Journal of Power Sources, 157 (2006) 212–216.

[44] Xuguang Li, I.-Ming Hsing, Electrochimica Acta, 51 (2006) 3477–3483

[45] H. Bönneman, W. Brijoux, R. Brinkmann, E. Dinjus, T. Jou?en, B. Korall, Angew. Chem. Int. Engl., 1991; 30(10):1312-1314.

[46] M. Götz and H. Wendt, Electrochim Acta 1998; 43(24):3637-3644.

[47] R. Richards, R. Mortel, H. Bonnemann, Fuel Cell Bulletin, 2001; 4(37):7-10.

[48] H. Bönneman, private communication, October 16, 2003.

[49] H. Bönneman, U. Endruschat, J. Hormes, G. Kohl, S. Kruse, H. Modrow, R. Mortel, K.S. Nagabhushana, Fuel Cells, 2004; 4(3):297-308.

[50] Elöd Gyenge, M. Atwan, Derek Northwood, J. Electrochem. Soc., 153 (1) (2006) A150-A158.

[51] Mohammed H. Atwan , Charles L.B. Macdonald b, Derek O. Northwood, Elod L. Gyenge, J. Power Sources, 158 (2006) 36-44.

[52] A.J. Bard, L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd Ed., JW, NY (2001) 156-260, 331-348.