# Computational analysis of encapsulated phase change materials latent heat thermal energy storage system

Computational analysis of encapsulated phase change materials latent heat thermal energy storage system

Mayank SrivastavaM.K. Sinha

Department of Mechanical Engineering National Institute of Technology Jamshedpur, India

Corresponding Author Email:
mayank.nitjamshedpur@gmail.com
Page:
227-239
|
DOI:
https://doi.org/10.3166/JESA.50.227-239
| |
Published:
31 August 2017
| Citation

OPEN ACCESS

Abstract:

This article proposes a computational and mathematical study to analyse interface position, rate of interface and temperature variation of encapsulated phase change thermal energy storage system (TESS) with constant heat flux for outward melting process. Conduction is the main phenomenon that governs the melting process. Spherical and cylindrical geometry is used to encapsulate the phase change material to avoid direct contact between heat transfer fluid (HTF) and phase change materials, which is under constant temperature boundary condition, applied only on one wall. Other walls are thermally insulated. The computational results are obtained for melting of solid which is initially at its fusion temperature by using computational fluid dynamics software and a matlab code has been written to develop a mathematical model for this study.

Keywords:

conduction, HTF, interface position, melting, phase change materials, TEES

1. Introduction
2. Mathematical modelling
3. Computational modelling
4. Results and discussion
5. Conclusions
References

Amin N. A. M., Bruno F., Belusko M. (2014). Effective thermal conductivity for melting in PCM encapsulated in a sphere. Applied Energy, Vol. 122, pp. 280-287. http://dx.doi.org/10.1016/j.apenergy.2014.01.073

Azad M., Dineshan D., Groulx D., Donaldson A. (2016). Melting of phase change materials in a cylindrical enclosure: Parameters influencing natural convection onset. 4th International Forum on Heat Transfer, IFHT2016 November 2-4, 2016, Sendai, Japan.

Belen Z., Jose M. M., Luisa F. C., Harald M. (2003). Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, Vol. 23, pp. 251-283. http://dx.doi.org/10.1016/S1359-4311(02)00192-8

Carslaw H. S., Jaeger J. (1959). Conduction of heat in solids, 510, Clarendon.

Darzi A. R., Farhadi M., Sedighi K. (2012). Numerical study of melting inside concentric and eccentric horizontal annulus. Applied Mathematical Modelling, Vol. 36, pp. 4080-4086. http://dx.doi.org/10.1016/j.apm.2011.11.033

Erek A., Dincer I. (2009). Numerical heat transfer analysis of encapsulated ice thermal energy storage system with variable heat transfer coefficient in downstream. International Journal of Heat and Mass Transfer, Vol. 52, No. 3-4, pp. 851-859. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.06.024

Agyenim F., Hewitt N., Eames P., Smyth M. (2010). A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, Vol. 14, 615–628. http://dx.doi.org/10.1016/j.rser.2009.10.015

Gauche P., Xu W. (2000). Modeling phase change material in electronics using CFD-A case study. In Proceedings-Spie The International Society For Optical Engineering, pp. 402-407. International Society for Optical Engineering; 1999.

Hristov J. (2010). The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and benchmark exercises. arXiv preprint arXiv:1012.2533.

Kumar A., Prasad A., Upadhaya S. N. (1987). Spherical phase-change energy storage with constant temperature heat injection. Journal of Energy Resources Technology, Vol. 109, No. 3, pp. 101-104. http://dx.doi.org/10.1115/1.3231333

Mohammed M. F., Amar M. K., Siddique A. K. Razack S. A. H. (2004). A review on phase change energy storage: materials and applications. Energy Conversion and Management, Vol. 45, pp. 1597-1615.

Qiu L., Yan M., Tan Z. (2012). Numerical simulation and analysis of PCM on phase change process consider natural convection influence. In Proceedings of the 2nd International Conference on Computer Application and System Modeling, pp. 33-36.

Ren H.S. (2007). Application of the heat-balance integral to an inverse Stefan problem. International Journal of Thermal Sciences, Vol. 46, No. 2, pp. 118-127. http://dx.doi.org/10.1016/j.ijthermalsci.2006.04.013

Sadoun N., Si-Ahmed E. K., Colinet P. (2006). On the refined integral method for the one-phase Stefan problem with time-dependent boundary conditions. Applied Mathematical Modelling, Vol. 30, No. 6, pp. 531-544. http://dx.doi.org/10.1016/j.apm.2005.06.003

Savović S., Caldwell J. (2009). Numerical solution of Stefan problem with time-dependent boundary conditions by variable space grid method. Thermal Science, Vol. 13, No. 4, pp. 165-174.

Sugawara M., Komatsu Y., Beer H. (2011). Three-dimensional melting of ice around a liquid-carrying tube. Heat Mass Transfer, Vol. 47, pp. 139-145. http://dx.doi.org/10.1007/s00231-010-0676-5

Tan F., Hosseinizadeh S., Khodadadi J., Fan L. (2009). Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. International Journal of Heat and Mass Transfer, Vol. 52, pp. 3464–3472.

Trp A. (2005). An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Solar Energy, Vol. 79, No. 6, pp. 648-660. http://dx.doi.org/10.1016/j.solener.2005.03.006