The multi-product multi-site joint delivery problem

The multi-product multi-site joint delivery problem

Mouna Rahmouni Jean-Claude Hennet 

Aix Marseille University, CNRS, ENSAM, Toulon University, LSIS UMR 7296, 13397, Marseille, France

Corresponding Author Email: 
mouna.rahmouni@gmail.com
Page: 
659-676
|
DOI: 
https://doi.org/10.3166/JESA.49.659-676
Received: 
13 May 2015
| |
Accepted: 
18 December 2015
| | Citation
Abstract: 

The joint delivery problem of products (JDP) consists in planning deliveries of different products to different consumption or distribution sites by treating the grouping, delivery and storage problems. It comes to building the delivery schedule over the planning horizon, to satisfy demands while minimizing the total cost of ordering, delivery and storage. Fixed ordering costs are associated with each tour launching and each couple (product, site) present in the tour. In our approach, the problem is formulated in discrete time and we  choose a multiple of the elementary period as a common cycle time, which is the considered planning horizon. Thus, deliveries stay periodic through repetition of the planning horizon, but deliveries during the planning horizon are not constrained to be periodic. The numerical results show in particular that the results of this approach are better than the solution with periodical delivery for each couple (product, site).

Keywords: 

joint delivery problem, joint replenishment problem, lot sizing problem, linear programming.

1. Introduction
2. Les modèles de JDP
3. les résultats numériques
4. Minimisation de la capacité de livraison maximale
5. Conclusion
  References

Applegate D., W. Cook, S. Dash and A. Rohe. (2002). Solution of a min-max vehicle routing problem, INFORMS Journal on Computing, 14 (2), p. 132–143.

Bell W. J., Dalberto L. M., Fisher M. L., Greenfield A. J., Jaikumar R., Kedia P., Mack R G. and Prutzman P. J. (1983). Improving the Distribution of Industrial Gases with an On-Line Computerized Routing and Scheduling Optimizer, inform: interfaces, 13 (6), p. 4-23.

Brahimi N., Dauzere-Peres S., Najid N. M. and Nordli A. (2006). Single item lot sizing problems, European Journal of Operational Research, 168, p. 1–16.

Coelho L.-C., Cordeau J. and Laporte G. (2012). The inventory-routing problem with transshipment, Computers & Operations Research, 39 (11), p. 2537–2548.

Deleplanque S., Duhamel C., Kedad-Sidhoum S., Liberalino H. and Quilliot A. (2012). Décomposition d’un Problème de Lot-Sizing Multi-site en Problèmes de Localisation et de Multi-flots, Conférence de recherche opérationnelle et d’aide à la décision en France (ROADEF), France.

Dellaert N., Jeunet J. and Jonard N. (2000). A genetic algorithm to solve the general multi- level lot-sizing problem with time-varying costs, International Journal of Production Economics, 68, p. 241-257.

Hindi K. S. (1995). Computationally efficient solution of the multi-item, capacitated lot- sizing problem, Computers industrial Engineering, 28(4), p. 709-719.

Jans R. and Z. Degraeve (2008). Modeling Industrial Lot Sizing Problems: A Review,

International Journal of Production Research, 46(6), p. 1619-1643.

Lu T, Jia S., Li Y. (2010). A modified RAND algorithm for multi-buyer Joint Replenishment Problem with resource constraints. IEEE International Conference Software Engineering (ICISE); 2526–2529.

Makhorin A., (2012) GLPK Package, GNU Project, [Online]. Available: http://www.gnu.org/software/glpk, /.

Millar H. H. and Yang M. (1993). An application of lagrangean decomposition to the capacitated multi-item lot sizing problem, Computers Operations Research. 20(4), p. 409- 420.

Moon I.K. and Cha B.C. (2006) the joint replenishment problem with resource restriction. European Journal of Operational Research, 173, p. 190–198.

Norden L. van and van de Velde S. (2005). Multi-product lot-sizing with a transportation capacity reservation contract, European Journal of Operational Research, 165, p. 127– 138.

Rahmouni M., Hennet J.-C. and Fnaiech F. (2013). Mixed Integer Linear Programming for Delivery Planning in Joint Replenishment Problems, Proceedings CODIT 2013, IEEE Computer Society, p. 665-670.

Sambasivan M. and Yahya S. (2005). A Lagrangean-based heuristic for multi-plant, multi- item,multi-period capacitated lot-sizing problems with inter-plant transfers, Computers & Operations Research, 32, p. 537–555.

Triqui L. and Hennet J.-C. ( 2012). Gestion coopérative de stock de produits finis dans un réseau de distribution, Actes Conférence internationale en modélisation, optimisation et simulation (MOSIM’12), hal-00728642, CNRS.

Xie J., and Dong J. (2002). Heuristic Genetic Algorithms for General Capacitated Lot-Sizing Problems, Computers and Mathematics with Applications, 44, p. 263-276.

Zheng H.-Z., Chu D.-H., Zhan D.-C. and Xu X.-F. (2009). A heuristic solution approach for VMI cyclic inventory routing problem, Global congress on intelligent systems, IEEE computer society, p. 503-508.