Performance evaluation of holonic paradigm application to a switch arrival system

Performance evaluation of holonic paradigm application to a switch arrival system

Carlos Indriago Olivier Cardin Odile Bellenguez-Morineau Naly Rakoto Pierre Castagna Edgar Chacòn 

LUNAM Université, IUT de Nantes – Université de Nantes, IRCCyN UMR CNRS 6597 (Institut de Recherche en Communications et Cybernétique de Nantes) 2 avenue du Prof. Jean Rouxel – 44475 Carquefou

Universidad de los Andes – La Hechicera Mérida 5101 Venezuela

LUNAM Université, Ecole des Mines de Nantes, IRCCyN UMR CNRS 6597 (Institut de Recherche en Communications et Cybernétique de Nantes) 4 Rue Alfred Kastler – 44300 Nantes

Corresponding Author Email: 
olivier.cardin@irccyn.ec-nantes.fr, odile.morineau@mines-nantes.fr, echacon@ula.ve
Page: 
325-347
|
DOI: 
https://doi.org/10.3166/JESA.49.325-347
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
30 June 2016
| Citation
Abstract: 

Holonic paradigms have been extensively studied in the context of discrete manufacturing. A different class of systems is studied here, hybrid systems, which includes systems with piecewise continuous evolution and whose changes are related to some discrete variables evolution. In this case, a system reconfiguration is usually necessary, and Holonic paradigm is an appropriate response to the need of flexibility arising. This article proposes the application of a well-known reference architecture of discrete literature to a hybrid systems case. The proposed model consists in the union of hybrid Controller-Interface-System and Holonic PROSA model. A case study based on a system of arrivals switching was selected and shows the relevance of the discrete reference architecture to model hybrid systems. A performance evaluation is proposed by comparing the holonic control with a scheduling algorithm in the sever's position.

Keywords: 

Hybrid control systems, holonic manufacturing systems, switch arrival system, PROSA

1. Introduction
2. État de l’art
3. Méthodologie
4. Cas d’étude
5. Application au cas d’étude
6. Évaluation de performance
7. Conclusion
Remerciements

Ce travail a été partiellement financé par le programme ECOS-Nord V11M01 (Ministère des Affaires Étrangères français et FONACIT Ministry of Science and Technology – Venezuela.)

  References

Chacón E., Besembel I., Narciso F., Montilva J., Colina E. (2002). An integration architecture for the automation of a continuous production complex. ISA Trans. 41, 95–113. doi:10.1016/S0019-0578(07)60205-5

Chase C., Serrano J., Ramadge P.J. (1993). Periodicity and chaos from switched flow systems: contrasting examples of discretely controlled continuous systems. IEEE Trans. Autom. Control 38, 70–83. doi:10.1109/9.186313

Chirn J.-L., McFarlane D.C. (2000). A holonic component-based approach to reconfigurable manufacturing control architecture. 11th International Workshop on Database and Expert Systems Applications, Proceedings. p. 219–223. doi:10.1109/DEXA.2000.875030

Chokshi N., McFarlane D. (2008). A distributed architecture for reconfigurable control of continuous process operations. J. Intell. Manuf. 19, 215–232.

Chokshi N., McFarlane D. (2007). A Distributed Coordination Approach to Reconfigurable Process Control. Springer.

David R., Alla H. (2010). Discrete, continuous, and hybrid Petri nets. Springer.

Indriago C., Cardin O., Rakoto N., Chacón E., Castagna P. (2015). Application of Holonic Paradigm to Hybrid Processes: Case of a Water Treatment Process. Service Orientation in Holonic and Multi-Agent Manufacturing, Studies in Computational Intelligence. Springer, p. 39-48.

Koutsoukos X.D., Antsaklis P.J., Stiver J.A., Lemmon M.D. (2000). Supervisory control of hybrid systems. Proc. IEEE 88, 1026–1049. doi:10.1109/5.871307

Labinaz G., Bayoumi M.M., Rudie K. (1997). A survey of modeling and control of hybrid systems. Annu. Rev. Control 21, 79–92. doi:10.1016/S1367-5788(97)00019-9

Labinaz G., Rudie K., Ricker L., Sarkar N., Bayoumi M.M. (1996). A hybrid system investigation of fluid-filled tanks (Technical Report No. 96-01). Department of Electrical and Computer Engineering, Queen’s University, Canada. A summary of this work was presented at 12th International Symposium of Mathematical Theory of Networks and Systems 1996, St, Louis, MO.

Leitão P., Restivo F. (2006). ADACOR: A holonic architecture for agile and adaptive manufacturing control. Comput. Ind. 57, 121–130. doi:10.1016/j.compind.2005.05.005

McFarlane D.C. (1995). Holonic manufacturing systems in continuous processing: concepts and control requirements, in Proceedings of ASI. Citeseer, p. 282ą273.

Pach C., Berger T., Bonte T., Trentesaux D. (2014). ORCA-FMS: a dynamic architecture for the optimized and reactive control of flexible manufacturing scheduling. Comput. Ind. 65, 706–720. doi:10.1016/j.compind.2014.02.005

Pujo P., Broissin N., Ounnar F. (2009). PROSIS: An isoarchic structure for HMS control. Eng. Appl. Artif. Intell., Distributed Control of Production Systems 22, 1034–1045. doi:10.1016/j.engappai.2009.01.011

Quintanilla F.G., Cardin O., Castagna P. (2014). Product Specification for Flexible Workflow Orchestrations in Service Oriented Holonic Manufacturing Systems, in: Borangiu T., Trentesaux D., Thomas A. (Eds.), Service Orientation in Holonic and Multi-Agent Manufacturing and Robotics, Studies in Computational Intelligence. Springer International Publishing, p. 177–193.

Tian Y.-P. (2005). Delayed feedback control of chaos in a switched arrival system. Phys. Lett. A 339, 446–454. doi:10.1016/j.physleta.2005.03.061

Ushio T., Ueda H., Hirai K. (1995). Controlling chaos in a switched arrival system. Syst. Control Lett. 26, 335–339. doi:10.1016/0167-6911(95)00032-1

Van Brussel H., Wyns J., Valckenaers P., Bongaerts L., Peeters P. (1998). Reference architecture for holonic manufacturing systems: PROSA. Comput. Ind. 37, 255–274. doi:10.1016/S0166-3615(98)00102-