Une approche de conception de systèmes multi-agents dédiés à la gestion des connaissances

Une approche de conception de systèmes multi-agents dédiés à la gestion des connaissances

Davy Monticolo Alex Gabriel  Pedro Chavez Barrios 

Laboratoire ERPI, Université de Lorraine, 8 rue Bastien Lepage

Corresponding Author Email: 
(davy.monticolo ; alex.gabriel ; pedro.chavez) @univ-lorraine.fr
30 April 2018
| Citation

Knowledge management is an opportunity to improve performance for organizations. Knowledge is dynamic since it evolves continuously and can be disseminated in the form of information in an extremely varied and rapid ways through the internal network of the organization and more and more outside the organization through the Web. In order to use knowledge management approaches to increase the organizational performance, we need to understand the mechanisms for creating, sharing, updating, and evolving knowledge. These processes are very complex when you consider that they are different at the individual, group or communities on the Web. This article proposes an intelligent system design method for managing knowledge of an organization. The approach is based on an organization modeling approach in order to identify the knowledge resulting from the interactions between the different roles. The second part of the article describe the specification of multi-agent systems dedicated to knowledge management based on organizational models.


organizational model, multi agent system, knowledge management

1. Introduction
2. Systèmes multi-agents pour la gestion des connaissances
3. Démarche de conception d’un système multi-agents à partir d’une représentation organisationnelle
4. Conclusion

Amyot D., Ghanavati S., Horkoff J., Mussbacher G., Peyton L., Yu E. (2010). Evaluating goal models within the goal-oriented requirement language. International Journal of Intelligent Systems, vol. 25, n° 8, p. 841-877.

Ang C. L., Gay R. K., Khoo L. P. & Luo M. (1997). A knowledge-based Approach to the Generation of IDEF0 Models. International Journal of Production Research, 35, p. 1385-1412.

Armstrong M. (2009). Armstrong’s Handbook of Human Resource Management Practice (11th ed.). London/Philadelphia: Kogan Page.

Augier M. (2013), The early evolution of the foundations for behavioral organization theory and strategy, in European Management Journal, 31, p. 72-81.

Azzini A., Ceravolo P., Damiani E., Zavatarelli F.: Knowledge Driven Behavioural Analysis in Process Intelligence. ATAED@Petri Nets/ACSD 2015, p. 97-111.

Bagić Babac M., Jevtić D. (2014). AgentTest. Neurocomputing, vol.146(C), p. 230-248.

Baljak V. et al. (2012). S-CLAIM: An Agent-based Programming Language for AmI, A Smart-Room Case Study. Procedia Computer Science, 10, p. 30-37.

Bandini S., Bonomi A., Vizzari G., Acconci V. (2010). Self-organization models for adaptive environments: Envisioning and evaluation of alternative approaches, Simulation Modelling Practice and Theory, vol. 18, n° 10, November, p. 1483-1492.

Barbosa J., Leitão P., Adam E., Trentesaux D. (2015). Dynamic self-organization in holonic multi-agent manufacturing systems: The ADACOR evolution, Computers in Industry, vol. 66, January, p. 99-111.

Baumard P. (1996). Organizations in the Fog: An Investigation into the Dynamics of Knowledge. Organizational Learning and Competitive Advantage. B. Edmondson & A. Moingeon, eds. London, p. 74-91.

Ben Milled A., Monticolo D., Hilaire V., Koukam A. (2009). “An Approach for Building Holonic Organizational Models of Design Processes for Knowledge Management”, 30th

International Conference on Application and Theory of Petri Nets and Other Models of Concurrency, Paris, France, June.

Bonjour E., Geneste L., Bergmann R. (2014). Enhancing experience reuse and learning. Knowl.-Based Syst., 68, p. 1-3.

Bonjour E., Dulmet M., Lhote F. (2002). An internal modeling of competency, based on a systemic approach, with socio-technical systems management in view, Systems, Man and Cybernetics, 2002 IEEE International Conference on, 11/2002.

Carley K.M. (2002). Computational organization science: a new frontier. Proceedings of the National Academy of Sciences of the United States of America, 99 Suppl 3(1), p. 7257-7262.

Cela O., Front A., Rieu D. (2017). CEFOP: A method for the continual evolution of organisational processes, RCIS.

Cervenka, R. and Trencansky, I., (2007). AML: The Agent Modeling Language, A comprehensive Approach to Modeling Multi-Agent Systems, Berlin: Birkhäuser Verlag AG, Basel • Boston • Berlin.

Chai S., Kim M. (2014). An extended attribute based access control model with trust and privacy: Application to a collaborative crisis management system, Future Generation Computer Systems, vol. 31, February, p. 147-168.

Chen L., Fong P. S. W. (2015). Evaluation of knowledge management performance: An organic approach, Information & Management, vol. 52, n° 4, June, p. 431-453.

Clet E., Maders H. P., Leblanc J. et Goldfarb M. (2013). Le métier de chef de projet, Editions Eyrolles, 20 novembre.

Coutinho L., Brandão A., Sichman J., Boissier J. (2008). Model-driven integration of organizational models. Paper presented at the Ninth International Workshop on Agent Oriented Software, held at AAMAS 2008, Estoril, Portugal.

Coutinho L., Brandão A., Sichman J., Boissier J. (2009). Modelling Dimensions for Agent Organizations, in Multi Agent Systems, Semantics and Dynamics of Organizational Models, Information Science Reference, IGI Global.

Damiani E., Gianini G., Leida M. (2015). Toward behavioral business process analysis. CEC 2015, p. 2347-2353.

De Abreu Netto M., Dos Santos Neto B., De Lucena C. (2015). A Pattern-Based Framework for Building Self-Organizing Multi-Agent Systems, Advances in Artificial Transportation Systems and Simulation, p. 21-35.

Dignum V. (2009). Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Organizational Models, IGI Global 2009, ISBN 978-1-60566-256-5.

Ferber J., Gutknecht O., Michel F. (2004). From agents to organizations: an organizational view of multi-agent systems. Agent Oriented Software Engineering IV, In Giorgini P., Müller J. P. & Odell J (Eds.), LNCS 2935, p. 443-459. Berlin: Springer.

Girodon J., Monticolo D., Bonjour E., Perrier M. (2015). An organizational approach to designing an intelligent knowledge-based system: Application to the decision-making process in design projects, Advanced Engineering Informatics, vol. 29, n° 3, August, p. 696-713.

Hilaire V., Koukam A., Gruer P., and Müller J.-P. (2000). Formal specification and prototyping of multi-agent systems. Engineering Societies in the Agents’ World, number 1972 in Lecture Notes in Artificial Intelligence, Omicini A., Tolksdorf R., and Zambonelli F., editors,. Springer Verlag.

Jabrouni H., Kamsu-Foguem B., Geneste L., Vaysse C. (2011). Continuous improvement through knowledge-guided analysis in experience feedback. Eng. Appl. of AI, vol. 24, n° 8, p. 1419-1431.

Jemielniak D., Kociatkiewicz J. (2009). Handbook of Research on Knowledge-Intensive Organizations, Information Science Reference (an imprint of IGI Global).

Jaekoo J., Namhun K., Richard A. W., Ling R., Young-Jun S., Yeong-gwang O., Seungho L. (2013). Agent-based simulation of affordance-based human behaviors in emergency evacuation, Simulation Modelling Practice and Theory, vol. 32, March, p. 99-115.

Kamsu-Foguem B., Coudert T., Béler C., Geneste L. (2008). Knowledge formalization in experience feedback processes: An ontology-based approach. Computers in Industry, vol. 59, n° 7, p. 694-710.

Kountouriotis V., Thomopoulos S., Papelis Y. (2014). An agent-based crowd behaviour model for real time crowd behaviour simulation, Pattern Recognition Letters, vol. 44, 15 July, p. 30-38.

Lahoud I., Monticolo D., Hilaire V., Gomes S., Bonjour E. (2012). A multisources knowledge management system, 14th IFAC Symposium on Information Control Problems in Manufacturing (INCOM’12), 23-25 May, Bucharest, Romania.

Lahoud I., Monticolo D., Hilaire V., Gomes S. (2012).A metamodeling and transformation approach for knowledge extraction. The Fourth International Conference on Networked Digital Technologies (NDT’12), 24-26 April, Dubai, UAE.

Langevin J., Wen J., Gurian P. L. (2015). Simulating the human-building interaction: Development and validation of an agent-based model of office occupant behaviors, Building and Environment, vol. 88, June, p. 27-45.

Leistner F. (2010). Mastering Organizational Knowledge Flow, Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Luo S., Du Y., Liu P., Xuan Z., Wang Y. (2015). A study on coevolutionary dynamics of knowledge diffusion and social network structure. Expert Systems with Applications, vol. 42, n° 7, 1 May, p. 3619-3633.

Mariel A. Ale, Carlos M. Toledo, Omar Chiotti, María R. Galli (2014). A conceptual model and technological support for organizational knowledge management, Science of Computer Programming, vol. 95, Part 1, 1 December, p. 73-92.

Movahediann F., Front A., Rieu D., Farastier A., Grandvallet C., Pourroy F., Prudhomme G. (2017). A participative method for knowledge elicitation in collaborative innovation projects, RCIS, p. 244-254.

Monticolo D., Hilaire V., Koukam A., Gomes S. (2007). OntoDesign; A domain ontology for building and exploiting project memories in product design projects, International Conference in Knowledge Management in Organizations, Lecce Italia, September.

Monticolo D., Hilaire V., Gomes S. and Koukam A. (2008). A Multi Agents Systems for Building Project Memories to Facilitate Design Process, International Journal in Integrated Computer Aided Engineering, vol. 15, Number 1/ p.s 3-20.

Monticolo D., Lahoud I., Bonjour E. (2012). SemKnow: A Multi-Agent Platform to manage distributed knowledge by using ontologies, The 2012 IAENG International Conference on Artificial Intelligence and Applications (ICAIA’12) Hong Kong, 14-16 March.

Monticolo D., Mihaita S. (2014). A multi Agent System to Manage Ideas during Collaborative Creativity Workshops, International Journal of Future Computer and Communication (IJFCC), vol. 3, n° 1, February, p. 66-71.

Monticolo D., Mihaita S., Darwich H., Hilaire V. (2014). An agent-based system to build project memories during engineering projects, International Journal of Knowledge-Based Systems, September 2014, vol. 68, p. 88-102.

Monticolo D., Badin J., Gomes S., Bonjour E. (2015). A meta-model for knowledge configuration management to support collaborative engineering, Computers in Industry, vol. 66, January, p. 11-20.

Murray E. J. (2009). Knowledge Management, Organizational Memory and Transfer Behavior: Global Approaches and Advancements, IGI Global edition.

Cela O., Front A., Rieu D. (2017). CEFOP: A method for the continual evolution of organisational processes, RCIS.

Pan Y., Xu Y., Wang X., Zhang C., Ling H., Lin J. (2015). Integrating social networking support for dyadic knowledge exchange: À study in a virtual community of practice, Information & Management, vol. 52, Issue 1, January, p. 61-70.

Park J. G., Lee J. (2014). Knowledge sharing in information systems development projects: Explicating the role of dependence and trust, International Journal of Project Management, vol. 32, n° 1, January, p. 153-165.

Paul A. K., Anantharam R. N. (2003). Impact of people management practices on organisational performance: analysis of a casual mode. International Journal of Human Resource Management, 14, p. 1246-1266.

Sichman J. S., Dignum V., Castelfranchi C. (2005). Agents’ Organizations: A Cocise Overview. Journal of the Brazilian Computer Society (JBCS) - Special Issue on Agents Organizations, vol. 11, n° 1, p. 3-8.

Shan L., Zhu H. (2004). CAMLE : A Caste-Centric Agent Modelling Language and Environment. In 3rd International Workshop on Software Engineering for Large-Scale Multi-Agent Systems, SELMAS’04. Edinburg, United Kingdom, p. 1-13.

Tongo C. I. A. (2012). A Stakeholder Model for Managing Knowledge Assets in Organizations, in New Research on Knowledge Management Models and Methods, Ed by Huei-Tse Hou, ISBN 978-953-51-0190-1, published by InTech.

Verstaevel N., Régis C., Gleizes M. P., Robert F. (2015). Principles and Experimentations of Self-organizing Embedded Agents Allowing Learning from Demonstration in Ambient Robotic, Procedia Computer Science, vol. 52, p. 194-201.

Yeom K. (2010). Bio-inspired self-organization for supporting dynamic reconfiguration of modular agents, Mathematical and Computer Modelling, vol. 52, n° 11-12, December, p. 2097-2117.