Moteur de révision d’ontologie en SHIQ

Moteur de révision d’ontologie en SHIQ

Thinh Dong Myriam Lamolle  Chan Le Duc  Philippe Bonnot 

LIASD (EA-4383) Université Paris 8 - IUT de Montreuil, France

Corresponding Author Email: 
dong, lamolle, leduc,
30 April 2018
| Citation

The more and more collective intelligence benefits from ontological knowledge representations. Developing collaboratively an ontology would need to often revise it. However, changing a portion of represented knowledge of an ontology may lead to change the semantics of the whole ontology. We have proposed a novel tableau algorithm for revising an ontology expressed in the SHIQ description logic following a deep investigation of existing approaches to ontology revision. This algorithm ensures integration of the new knowledge into the ontology, consistency of the resulting ontology and minimal changes.We have implemented this algorithm and integrated it within a web-based prototype, called ONTOREV. This prototype provides access to functions related to ontology revision via web services and supports to develop and maintain an ontology in a collaborative way.


collective intelligence, ontology, revision, reasoning, Web services

1. Introduction
2. Contexte de l’étude
3. Principes de la révision d’ontologie
4. Notre approche de révision pour des ontologies en SHIQ
5. Moteur de révision OntoRev
6. Utilisation en ligne d’OntoRev
7. Discussion
8. Conclusion et perspectives

Ce travail a été financé grâce au FUI15-LearningCafé


Alchourrón C., Gärdenfors P., Makinson D. (1985). On the logic of theory change : Partial meet contraction and revision functions. Journal of symbolic Logic, vol. 50, p. 510-530.

Baader F., Horrocks I., Sattler U. (2003). Description logics as ontology languages for the semantic web. In Festschrift in honor of jörg siekmann, lecture notes in artificial intelligence, p. 228–248. Springer-Verlag.

Baader F., Nutt W. (2003). Basic description logics. In The description logic handbook: Theory, mplementation and applications, p. 47–100. Cambridge University Press.

Baader F., Sattler U. (2001). An overview of tableau algorithms for description logics. Studia Logica, vol. 69, no 1, p. 5–40.

Dalal M. (1988). Investigations into a theory of knowledge base revision. In Proceedings of aaai, p. 475–479.

De Giacomo G., Lenzerini M., Poggi A., Rosati R. (2007). On the approximation of instance level update and erasure in description logics. In Proceedings of AAAI, p. 403–408.

Eiter T., Gottlob G. (1992). On the complexity of propositional knowledge base revision, updates, and counterfactuals. Artificial Intelligence, vol. 57, p. 227–270.

Engel D., Woolley A. W., Jing L. X., Chabris C. F., Malone T. W. (2014). Reading the mind in the eyes or reading between the lines? theory of mind predicts collective intelligence equally well online and face-to-face. Plos One, vol. 9, no 12, p. e115212.

Fournier-Viger P. (2005). Un modèle de représentation des connaissances à trois niveaux de sémantique pour les systèmes tutoriels intelligents. In Mémoire de maîtrise (, université de sherbrooke, sherbrooke, canada. 3. ISI. Volume 23 – n° 2/ 2018

Glimm B., Horrocks I., Motik B. (2010). Optimized description logic reasoning via core blocking. In roceedings of the 5th international conference on automated reasoning, p.457–471.

Grau B. C., Jimenez-Ruiz E., Kharlamov E., Zheleznyakov D. (2012). Ontology Evolution Under Semantic Constraints. In Proc. of international conference on principles of knowledge representation and reasoning (kr), p. 137-147.

Hansen M. J., Vaagen H. (2016). Collective intelligence in project groups: Reflections from the field. Procedia Computer Sciences, Elsevier, vol. 100, p. 840–847.

Horrocks I., Sattler U., Tobies S. (1999). Practical reasoning for expressive description logics. In Logic programming and automated reasoning, 6th international conference, lpar’99, tbilisi, georgia, september 6-10, 1999, proceedings, p. 161–180.

Katsuno H., Mendelzon A. O. (1991). Propositional knowledge base revision and minimal change. Artificial Intelligence, vol. 53, no 3, p. 263–294.

Kharlamov E., Zheleznyakov D., Calvanese D. (2013, septembre). Capturing model-based ontology evolution at the instance level: The case of dl-lite. J. Comput. Syst. Sci., vol. 79, no 6, p. 835–872.

Kolonin A., Vityaev E., Orlov Y. (2016). Cognitive architecture of collective intelligence based on social evidence. Procedia Computer Sciences, Elsevier, vol. 88, p. 475–481.

Krötzsch M., Vrandecic D. (2011). Semantic mediawiki. In Foundations for the web of information and services, p. 311–326. Springer.

Lévy P. (1994). L’intelligence collective. pour une anthropologie du cyberespace. La Découverte, Paris.

Maleszka M., Nguyen N. T. (2015). Integration computing and collective intelligence. Elsevier Expert Systems with Applications, vol. 42(1), p. 332–340.

Minsky M. (1981). A framework for representing knowledge. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence, p. 95–128. Cambridge, MA, MIT Press.

Qi G., Du J. (2009). Model-based revision operators for terminologies in description logics. In Proceedings of the 21st international jont conference on artifical intelligence, p. 891–897. San Francisco, CA, USA, Morgan Kaufmann Publishers Inc.

Qi G.,Wang Z.,Wang K., Zhuang X. F. Z. (2015). Approximating model-based abox revision indl-lite: Theory and practice. In Proceedings of the twenty-ninth aaai conference on artificial intelligence, p. 254–260. AAAI Press.

Satoh K. (1988). Nonmonotonic reasoning by minimal belief revision. In Proceedings of the international conference on fifth generation computer systems, p. 455–462.

Sattler U. (1996). A concept language extended with different kinds of transitive roles. In G. Görz, S. Hölldobler (Eds.), 20. deutsche jahrestagung für künstliche intelligenz, p. 333–345. Springer Verlag.

Shearer R., Motik B., Horrocks I. (2008, October 26–27). Hermit: A highly-efficient owl reasoner. In A. Ruttenberg, U. Sattler, C. Dolbear (Eds.), Proc. of the 5th int. workshop on owl: Experiences and directions (owled 2008 eu). Karlsruhe, Germany. Moteur de révision d’ontologie en SHIQ 59

Sirin E., Parsia B., Grau B. C., Kalyanpur A., Katz Y. (2007). Pellet: A practical owl-dl reasoner. Web Semantics: Science, Services and Agents on the World Wide Web, vol. 5, no 2, p. 51 -53.

Tobies S. (2001). Complexity results and practical algorithms for logics in knowledge representation. PhD thesis, RWTH Aachen, Germany.

Trappey C. V., Smith P., Trappey S., Chen L. W. L., Tung J. T. C. (2014). Using the collective intelligence of sports fans to improve professional football league customer service. In CSCWD, p. 313–318. IEEE.

Tsarkov D., Horrocks I. (2006). Fact++ description logic reasoner: System description. In Proceedings of the third international joint conference on automated reasoning, p. 292–297.

Wang Z., Wang K., Topor R. (2010). A new approach to knowledge base revision in dl-lite. In Proceedings of the twenty-fourth conference on artificial intelligence, aaai 2010, atlanta, georgia, usa, july 11-15, p. 369–374.

Woolley A., Agarwal I., Malone T. (2015). Collective intelligence and group performance. , vol. 24, no 6, p. 420-424.