A decision-making adaptation approach based on fuzzy logic systems for composite SaaS

A decision-making adaptation approach based on fuzzy logic systems for composite SaaS

Rima Grati Khouloud Boukadi  Hanene Ben Abdallah 

Laboratoire Miracl, Université de Sfax Faculté des sciences économiques et de gestion de Sfax, Tunisie

King Abdulaziz University Faculty of Computing and Information Technology, Jeddah 23218, Arabie Saoudite

Corresponding Author Email: 
(rima.grati ; Khouloud.boukadi) @gmail.com; hbenabdallah@kau.edu.sa
31 August 2017
| Citation

Software as a Service (SaaS) is increasingly being adopted as a provision model where applications are hosted in a Cloud computing environment. To offer a SaaS with flexible functions at a low cost, the concept of composite SaaS was introduced as a combination of Cloud and Web services. Operating in a dynamic and volatile environment like the Cloud, a composite SaaS has very variable Quality of Service (QoS) parameters. Consequently, monitoring and adapting composite SaaS are vital means to guarantee QoS parameters defined in the Service Level Agreement (SLA). In this context, this paper proposes three Fuzzy algorithms for self-adaptive SaaS to prevent SLA violations for composite SaaS. The proposed algorithms have the merit of confronting three important issues, namely: the dependence of QoS parameters (e.g. availability) on low level metrics (e.g. uptime, downtime); the selection of service adaptation strategies that can cover both the business and


Cloud, composite SaaS, adaptation, fuzzy system

1. Introduction
2. Travaux connexes
3. Définition du contexte pour un SaaS auto-adaptatif
4. Architecture d’un SaaS composite auto-adaptatif (SAV-CSaaS)
5. Systèmes de logique floue pour SAV-CSaaS
6. Evaluation expérimentale et validation
7. Conclusion

Alexander K. et Heiko L. (2003). The WSLA Framework: Specifying and Monitoring Service Level Agreements for Web Services. Journal of Network and Systems Management, vol. 11, n° 1, p. 57-81.

Aschoff R. R. et Zisman A. (2012). Proactive adaptation of service composition. 2012 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).

Avila S. D. G. (2014). Proactive Adaptation in Service Composition using a Fuzzy Logic Based Optimization Mechanism. 4th International Conference on Cloud Computing and Service Science (CLOSER’14), Barcelona, Spain.

Bashar A. (2013). Autonomic scaling of Cloud Computing resources using BN-based prediction models. IEEE 2nd International Conference on Cloud Networking (CloudNet).

Bezdek J. C., Ehrlich R. et Full W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, vol. 10, n° 2, p. 191-203.

Dey A. K., Abowd G. D.et Salber D. (2001). A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications. Human-Computer Interaction, vol.16, n° 2, p. 97-166.

Emeakaroha V. C., Netto M. A. S., Calheiros R. N., Brandic I., Buyya R. et De Rose C. A. F. (2012). Towards autonomic detection of SLA violations in Cloud infrastructures. Special section: Quality of Service in Grid and Cloud Computing, vol. 28, n° 7, p. 1017-1029.

Grati. R., Boukadi. K. et Ben Abdallah. H. (2012). An Event based approach to Extract the Run Time Execution Path of BPEL Process for Monitoring QoS in the Cloud. World Academy of Science, Engineering and Technology (WASET), vol. 6, n° 10.

Huber N., Brosig F. et Kounev S. (2011). Model-based self-adaptive resource allocation in virtualized environments. Proceedings of the 6th International Symposium on Software Engineering for Adaptive and Self-Managing Systems. Waikiki, Honolulu, HI, USA, ACM, p. 90-99.

Kouki Y., Jr F. A. D. O., Dupont S. et Ledoux T. (2014). A Language Support for Cloud Elasticity Management. IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid, Chicago, United States.

Lauritzen S. (1995). The EM algorithm for graphical association models with missing data. Computational Statistics & Data Analysis 19.

Leitner P. (2011). On Preventing Violations of Service Level Agreements in Composed Services Using Self-Adaptation, Fakultät für Informatik der Technischen Universität Wien.

Maurer M., Brandic I. et Sakellariou R. (2013). Adaptive resource configuration for Cloud infrastructure management. Future Generation Computer Systems, vol. 29, n° 2, p. 472-487.

O'Brie A., Newhouse S. et Darlington J. (2004). Mapping of scientific workflow within the eprotein project to distributed resources. UK e-Science All Hands Meeting, Nottingham, UK: p. 404-409.

Pernici B. et Siadat S. H. (2011). Selection of Service Adaptation Strategies Based on Fuzzy Logic. 2011 IEEE World Congress on Services (SERVICES).

Rajni M. et Dahiya D. (2012). An Optimized Business Service Directory for the ESB Platform in SOA. International Journal of Computer Networks & Communications (IJCNC) vol. 4, p. 165-187.

Raman K., Marco P. et A. Z. (2009). Cross-layer Adaptation and Monitoring of Service- Based Applications. 2nd Workshop on Monitoring, Adaptation and Beyond (MONA+),Italy.

Sanfeliu J. (2005). Monitorix tool. from http://www.monitorix.org/.

Spirtes P., Glymour C. et Scheines R. (2001). Causation, Prediction and Search, 2nd ed. MIT Press.

Steck H. (2001). Constrained-based structural learning in Bayesian networks using finite data sets. Ph.D. dissertation, Department of Informatics,Technical University Munich.

VMware (2015). from http://www.vmware.com/products/esxi-and-esx/overview.

Winograd T. (2001). Architectures for Context. Human Computer Interaction Journal, vol. 6, n° 2-3, p. 401-419.

Yazdanov L. et Fetzer C. (2012). Vertical Scaling for Prioritized VMs Provisioning. 2012 Second International Conference on Cloud and Green Computing.

Zhao Y., Wilde M., Foster I., Voeckler J., Jordan T., Quigg E. et Dobson J. (2004). Grid middleware services for virtual data discovery, composition, and integration. 2nd workshop on Middleware for grid computing, Toronto, Ontario, Canada, p. 57-62.