A cooperative approach to failing fuzzy queries repairing fuzzy queries

A cooperative approach to failing fuzzy queries repairing fuzzy queries

Grégory Smits Olivier Pivert

Université de Rennes 1 / IRISA, Lannion - France

Corresponding Author Email: 
gregory.smits@irisa.fr,olivier.pivert@irisa.fr
Page: 
11-30
|
DOI: 
https://doi.org/10.3166/ISI.21.3.11-30
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
30 June 2016
| Citation
Abstract: 

Telling the user that there is no result for his/her query is very poorly informative and corresponds to the kind of situation cooperative systems try to avoid. Cooperative systems should rather explain the reason(s) of the failure, materialized by Minimal Failing Subqueries (MFS), and build alternative succeeding queries, called maXimal Succeeding Subqueries (XSS), that are as close as possible to the original query. In the particular context of fuzzy querying, we propose an efficient unified approach to the computation of gradual MFSs and XSSs that relies on a fuzzy-cardinality-based summary of the relevant part of the database. MOTS-CLÉS : requêtes floues, réponses coopératives, cardinalités floues, résumés de base de données, réparation de requête.

Keywords: 

fuzzy querying, cooperative answering, fuzzy cardinalities, database summarization, query repair

1. Introduction
2. Préliminaires
3. Réparation de requête floue
4. Expérimentation
5. Travaux connexes
6. Conclusion
  References

Agrawal R., Srikant R. (1994). Fast algorithms for mining association rules in large databases. In J. B. Bocca, M. Jarke, C. Zaniolo (Eds.), Vldb, p. 487-499. Morgan Kaufmann.

Andreasen T., Pivert O. (1995). Improving answers to failing fuzzy relational queries. In Proceedings ot the sixth international fuzzy systems association world congress, vol. 2, p. 345–348.

Bidault A., Froidevaux C., Safar B. (2000). Repairing queries in a mediator approach. In Ecai, p. 406–410.

Bosc P., Buckles B., Petry F., Pivert O. (1999). Fuzzy databases. In J. Bezdek, D. Dubois,

H. Prade (Eds.), Fuzzy sets in approximate reasoning and information systems, the handbook of fuzzy sets series, p. 403-468. Dordrecht, The Netherlands, Kluwer Academic Publishers.

Bosc P., Dubois D., Pivert O., Prade H., Calmès M. de. (2002). Fuzzy summarization of data using fuzzy cardinalities. In Proc. of the 9th international conference on information processing and management of uncertainty in knowledge-based systems (ipmu’02), p. 1553-

1559. Annecy, France.

Bosc P., Liétard L., Pivert O. (2002). Evaluation of flexible queries: The quantified statement case. In Technologies for constructing intelligent systems 1, p. 337–350. Springer.

Bosc P., Pivert O. (1995). SQLf : a relational database language for fuzzy querying. IEEE Transactions on Fuzzy Systems, vol. 3, no 1, p. 1-17.

Bosc P., Pivert O. (2000). SQLf query functionality on top of a regular relational database management system. In O. Pons, M. Vila, J. Kacprzyk (Eds.), Knowledge management in fuzzy databases, p. 171-190. Heidelberg, Germany, Physica-Verlag.

Dean J., Ghemawat S. (2008). Mapreduce: simplified data processing on large clusters. Communications of the ACM, vol. 51, no 1, p. 107–113.

Dubois D., Prade H. (1985). Fuzzy cardinalities and the modeling of imprecise quantification. Fuzzy sets and systems, vol. 16, p. 199-230.

Dubois D., Prade H. (2000). Fundamentals of fuzzy sets (vol. 7). Netherlands, Kluwer Academic Pub.

Godfrey P. (1997). Minimization in cooperative response to failing database queries. Int. J. Cooperative Inf. Syst., vol. 6, no 2, p. 95-149.

Jannach D. (2008). Finding preferred query relaxations in content-based recommenders. In Intelligent techniques and tools for novel system architectures, p. 81–97. Springer.

Kacprzyk J., Yager R. R. (2001). Linguistic summaries of data using fuzzy logic. International Journal of General System, vol. 30, no 2, p. 133–154.

McSherry D. (2004). Incremental relaxation of unsuccessful queries. In Advances in case-based reasoning, p. 331–345. Springer.

McSherry D. (2005). Retrieval failure and recovery in recommender systems. Artif. Intell. Rev., vol. 24, no 3-4.

Pivert O., Bosc P. (2012). Fuzzy preference queries to relational databases. London, UK, Imperial College Press.

Smits G., Pivert O., Girault T. (2013a). Reqflex: fuzzy queries for everyone. Proceedings of the VLDB Endowment, vol. 6, no 12, p. 1206–1209.

Smits G., Pivert O., Girault T. (2013b). Towards reconciling expressivity, efficiency and userfriendliness in database flexible querying. In Proc. of the IEEE international conference on fuzzy systems (FUZZ-IEEE 2013).

Smits G., Pivert O., Hadjali A. (2013). Fuzzy cardinalities as a basis to cooperative answering. In O. Pivert, S. Zadro˙zny (Eds.), Flexible approaches in data, information and knowledge management, vol. 497, p. 261-289. Springer.

Urrutia A., Tineo L., Gonzalez C. (2008). FSQL and SQLf: Towards a standard in fuzzy databases. In J. Galindo (Ed.), In handbook of research on fuzzy information processing in databases, p. 270-298. Hershey, PA, USA, Information Science Reference.

Yager R. R. (1993). Families of owa operators. Fuzzy sets and systems, vol. 59, no 2, p. 125–148.

Zadeh L. A. (1965). Fuzzy sets. Information and control, vol. 8, no 3, p. 338–353.

Zadeh L. A. (1983). A computational approach to fuzzy quantifiers in natural languages. Computers & Mathematics with applications, vol. 9, no 1, p. 149–184.