137Cs: Parametric Analysis of the Darcy Velocity Influence on the Contaminant Concentration at Receptor Well

137Cs: Parametric Analysis of the Darcy Velocity Influence on the Contaminant Concentration at Receptor Well

M.L. Pace 

Page: 
95-105
|
DOI: 
https://doi.org/10.2495/SAFE-V1-N1-95-105
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Safety analysis of nuclear installations involves the study of scenarios related to the release of radionuclides in the environment and their subsequent transport to a critical group of population. If transport in air and water is solved by the knowledge of few parameters easily measurable, groundwater transport is more complicated for the difficulty in measuring or finding the parameters involved in bibliography. At the current state of the art, groundwater calculations are usually performed by software platforms such as FRAMES 1.6. Correct utilization of FRAMES 1.6 as regards groundwater involves the knowledge of parameters such as soil absorption coefficients, bulk density, soil class and Darcy velocity. The latter is one of the most important parameter for simulation. It depends on permeability, dynamic viscosity and porosity of the soil. This work presents a parametric analysis on the influence of Darcy velocity for a case of radioactivity release in groundwater. The study is intended to give the safety analyst an instrument to device figures, for instance minimum–maximum approximations, on radionuclide transport in groundwater.

Keywords: 

aquifer, Darcy velocity, groundwater, radioactive contaminant, safety analysis, vadose zone.

  References

[1] Krupka, K.M., Kaplan, D.I., Whelan, G., Serne, R.J. & Mattigod, S.V., Understanding Variation in Partition Coefficient, Kd, Values – Volume I: The Kd Model, Methods of Measurement, and Application of Chemical Reaction Codes. EPA 402-R-99-004A,

U.S. Environmental Protection Agency, Office of Radiation and Indoor Air, Washington, DC, 1999.

[2] Krupka, K.M., Kaplan, D.I., Whelan, G., Serne, R.J. & Mattigod, S.V., Understanding Variation in Partition Coefficient, Kd, Values – Volume II: Review of Geochemistry and Available Kd Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium. EPA 402-R-99-004B, U.S. Environmental Protection Agency, Office of Radiation and Indoor Air. Washington, DC, 1999.

[3] DSA1-4. DSA, Attivita svolta dal Dipartimento di Scienze Ambientali nell’ambito della convenzione DSA-Sogin stipulata il 12/06/2002. Relazioni semestrali, pp. 1–4, 2002.

[4] DSA_N1. DSA, Attivita svolta dal Dipartimento di Scienze Ambientali nell’ambito della convenzione DSA-Sogin stipulata il 28/11/2003. PRIMA RELAZIONE SEMESTRALE, 2004.

[5] Napier, B., Napier. Comunicazione Privata, 2004.

[6] Napier, B., GenII Version 2, User guide. US-EPA, 1999.

[7] Napier, B., Strenge, Ramsdell, Eslinger, Fosmire. GenII Version 2, Software Design Document. US-EPA, 1999.

[8] SAB-RAC, GenII Version 2. Environmental radiation dosimetry system: an SAB advisory. Report EPA-SAB-RAC-ADV-01-002, 2001.

[9] DOE, GENII Computer Code Application Guidance for Documented Safety Analysis. Final Report, July 2004.

[10] Bateman, H., The solution of a system of differential equations occurring in the theory of radioactive transformations. Proc. Cambridge Philos. Soc., 16, pp. 423–427, 1910

[11] Campbell, G.S., A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci., 117, pp. 311–314, 1974. DOI:10.1097/00010694-197406000-00001

[12] Whelan, G. et al., Concepts of Framework for Risk Analysis In Multimedia Environmental Systems, USEPA, 1997.

[13] Civita, M., Idrogeologia applicata e ambiente, CEA: Milano, p. 794, 2005.

[14] Birdsell, K.H.N. et al., Simulation of Groundwater Flow and Radionuclide Transport in the Vadose and Saturated Zones Beneath Area G, Los Alamos Laboratory, Los Alamos National Laboratories, 1999.

[15] Simmonds, J.R., Lawson, G. & Mayall, A., Radiation Protection 72. EUR 15760 EN. European Commission.

[16] Whelan, G. et al., Multimedia Environmental Pollutant Assessment System (MEPAS): Groundwater Pathway Formulations. PNNL-10907/UC-630, Pacific Northwest National Laboratory: Richland, Washington.

[17] Davis, S.N. & De Wiest, R.J.M., Hydrogeology, Wiley & Sons: New York, 1966.

[18] Freeze, R.A. & Cherry, J.A., Groundwater, Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979.

[19] Harr, H.E., Groundwater and Seepage, McGraw-Hill: New York, 1962.

[20] Lane, L.J. & Nyhan, J.W., Water and Contaminant Movement: Migration Barriers, Los Alamos National Laboratories: Los Alamos, 1984.

[21] Linsley, R.K., Kohler, M.A. & Paulus, J.L.H., Hydrology for Engineers, McGraw-Hill: Tokyo, 1975.

[22] Mills, W.B., Porcella, D.B., Ungs, M.J., Gherini, S.A., Summers, K.V., Mok, L.F., Rupp, G.L., Bowie, G.L. & Haith, D.A., Water Quality Assessment: A Screening Procedure for Toxic and Conventional Pollutants in Surface and Ground Water. Part II. EPA/600/6-85/002b. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Athens, Georgia, 1985.

[23] MEPAS, Multimedia Environmental Pollutant System, http://mepas.pnl.gov/mepas/mepashelp/aqu.htm

[24] Meyer, P.D., Rockhold, M.L. & Gee, G.W., Uncertainty Analyses of Infiltration and Subsurface Flow and Transport for SDMP Sites. NUREG/CR-6565, PNNL-11705. U.S. Nuclear Regulatory Commission, Washington, DC, 1997.