Water Quality of the Beach in an Urban and Not Urban Environment

Water Quality of the Beach in an Urban and Not Urban Environment

Y. Villacampa I. López L. Aragonés C. García M. López A. Palazón

Department of Applied Mathematics, Alicante University, Spain

Department of Civil Engineering, Alicante University, Spain

Department of Civil Engineering, Catholic University of Murcia, Spain

Page: 
713-723
|
DOI: 
https://doi.org/10.2495/SDP-V12-N4-713-723
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Numerous studies and theories have emerged for evaluating the quality of beaches using different parameters. In recent years in the European region, one of the most important aspects when evaluating a beach is the quality of water and sand. The quality of water is represented by the amount of Intestinal Enterococcus and Escherichia coli. This parameter is essential and others to obtain the Blue Flag, indicating that the user of the beach can swim safely. The European Directive 2006/7/EC establishes the limits of E. coli and Enterococcus that may exist in bathing water. However, it should be noted that each ecosystem is unique, and therefore the characteristics a beach are not the same per example if you are in an inland sea, or an ocean, or equal if they are close to an urban or a natural area. In this paper, 1,392 beaches in Spain have been analysed, and it has been observed that in the Mediterranean, the beaches have a lower concentration of bacteria than other areas. In addition, it appears that the sandy beaches and urban beaches have a higher content of bacteria that natural and gravel beaches.

Keywords: 

E. coli, enterococcus, natural, sand and gravel beaches, urban and semi-urban beaches, water quality

1. Introduction
2. Study Area
3. Methodology
4. Results
5. Discussion
6. Conclusion
Acknowledgements
  References

[1] Sardá, R. & Fluviá, M., Tourist development in the costa brava (Girona, Spain): a quantification of pressures on the coastal environment. In Perspectives on Integrated Coastal Zone Management, eds. W. Salomons, R.K. Turner, L.D. Lacerda & S. Ramachandran, Springer Berlin Heidelberg: Berlin, Heidelberg, pp. 257–277, 1999 http://dx.doi.org/10.1007/978-3-642-60103-3_15

[2] Bosch, A., Lucena, F., Giron, R. & Jofre, J., Survey of viral pollution in Besós river (Barcelona). Journal (Water Pollution Control Federation), 58(1), pp. 87–91, 1986.

[3] Wyn-Jones, A. & Sellwood, J., Enteric viruses in the aquatic environment. Journal of Applied Microbiology, 91(6), pp. 945–962, 2001. http://dx.doi.org/10.1046/j.1365-2672.2001.01470.x

[4] Nasser, A.M., Prevalence and fate of hepatitis A virus in water. Critical Reviews in Environmental Science and Technology, 24(4), pp. 281–323, 1994. http://dx.doi.org/10.1080/10643389409388470

[5] Callahan, K.M., Taylor, D.J. & Sobsey, M.D., Comparative survival of hepatitis A virus, poliovirus and indicator viruses in geographically diverse seawaters. Water Science and Technology, 31(5–6), pp. 189–193, 1995. http://dx.doi.org/10.1016/0273-1223(95)00264-N

[6] Gantzer, C., Maul, A., Audic, J., & Schwartzbrod, L., Detection of infectious enteroviruses, enterovirus genomes, somatic coliphages, and Bacteroides fragilis phages in treated wastewater. Applied and Environmental Microbiology, 64(11), pp. 4307–4312, 1998.

[7] Yamahara, K.M., Layton, B.A., Santoro, A.E & Boehm, A.B., Beach sands along the California coast are diffuse sources of fecal bacteria to coastal waters. Environmental Science & Technology, 41(13), pp. 4515–4521, 2007. http://dx.doi.org/10.1021/es062822n

[8] Alm, E.W., Burke, J. & Hagan, E., Persistence and potential growth of the fecal indicator bacteria, Escherichia coli, in shoreline sand at lake huron. Journal of Great Lakes Research, 32(2), pp. 401–405, 2006. http://dx.doi.org/10.3394/0380-1330(2006)32[401:PAPGOT]2.0.CO;2

[9] Haugland, R.A., Siefring, S.C., Wymer, L.J., Brenner, K.P. & Dufour, A.P., Comparison of enterococcus measurements in freshwater at two recreational beaches by quantitative polymerase chain reaction and membrane filter culture analysis. Water Research, 39(4), pp. 559–568, 2005. http://dx.doi.org/10.1016/j.watres.2004.11.011

[10] Mallin, M.A., Williams, K.E., Esham, E.C. & Lowe, R.P., Effect of human development on bacteriological water quality in coastal watersheds. Ecological Applications, 10(4), pp. 1047–1056, 2000. http://dx.doi.org/10.1890/1051-0761(2000)010[1047:EOHDOB]2.0.CO;2

[11] Ariza, E., Jimenez, J.A., Sarda, R., Villares, M., Pinto, J., Fraguell, R., Roca, E., Marti, C., Valdemoro, H. & Ballester, R., Proposal for an integral quality index for urban and urbanized beaches. Environmental Management, 45(5), pp. 998–1013, 2010. http://dx.doi.org/10.1007/s00267-010-9472-8

[12] Winter, J. & Duthie, H., Effects of urbanization on water quality, periphyton and invertebrate communities in a southern Ontario stream. Canadian Water Resources Journal, 23(3), pp. 245–257, 1998. http://dx.doi.org/10.4296/cwrj2303245

[13] Pye, K., The nature and geomorphology of coastal shingle. Ecology & Geomorphology of Coastal Shingle, pp. 2–22, 2001.

[14] Ariza, E., Jiménez, J.A. & Sardá, R., A critical assessment of beach management on the Catalan coast. Ocean & Coastal Management, 51(2), pp. 141–160, 2008. http://dx.doi.org/10.1016/j.ocecoaman.2007.02.009

[15] Nayade, Sistema de Información Nacional de Aguas de Baño, 2015, available at http://nayade.msc.es/Splayas/home.html

[16] MAGRAMA, Ministerio de Agricultura, Alimentación y Medio Ambiente, Guía de Playas, 2015.

[17] INE. Instituto Nacional de Estadística, 2015, available at http://www.ine.es/

[18] Prescott, L.M., Harley, J.P. & Klein, D.A., Microbiology: Tata Mc Kathleen Park Talaro and Barry Chess, Foundations in Microbiology, 8th edn., Mc Graw-Hill companies: New York, 2002.

[19] Whitman, R.L., Nevers, M.B., Korinek, G.C. & Byappanahalli, M.N., Solar and temporal effects on escherichia coli concentration at a lake michigan swimming beach. Applied and Environmental Microbiology, 70(7), pp. 4276–4285, 2004. http://dx.doi.org/10.1128/AEM.70.7.4276-4285.2004

[20] Tchobanoglous, G. & Burton, F.L., Wastewater engineering. Management, 7, pp. 1–4, 1991.

[21] Meeroff, D.E., Bloetscher, F., Bocca, T. & Morin, F., Evaluation of water quality impacts of on-site treatment and disposal systems on urban coastal waters. Water Air and Soil Pollution, 192(1), pp. 11–24, 2008. http://dx.doi.org/10.1007/s11270-008-9630-2

[22] Marchand, E.O., Microorganismos indicadores de la calidad del agua de consumo humano en Lima Metropolitana, Tesis]. Lima, Perú: Escuela Académico Profesional de Ciencias Biológicas, 2000.

[23] Coyne, M. & Howell, J., The fecal coliform/fecal streptococci ratio (FC/FS) and water quality in the bluegrass region of Kentucky. Soil Science News and Views (USA), 5(9), p. 4, 1994.

[24] Garzio-Hadzick, A., Shelton, D.R., Hill, R.L., Pachepsky, Y.A., Guber, A.K. & Rowland, R., Survival of manure-borne E. coli in streambed sediment: Effects of temperature and sediment properties. Water Research, 44(9), pp. 2753–2762, 2010. http://dx.doi.org/10.1016/j.watres.2010.02.011

[25] Salcedo, I., Andrades, J.A., Quiroga, J.M. & Nebot, E., Desinfección de aguas residuales urbanas mediante radiación ultravioleta: aplicación el la EDAR de Jerez de la Frontera. Tecnología del Agua, (227), pp. 42–56, 2002.

[26] Longuet-Higgins, M. & Parkin, D., Sea waves and beach cusps. Geographical Journal, pp. 194–201, 1962. http://dx.doi.org/10.2307/1793470

[27] Sherman, D.J., Orford, J.D. & Carter, R., Development of cusp-related, gravel size and shape facies at Malin Head, Ireland. Sedimentology, 40(6), pp. 1139–1152, 1993. http://dx.doi.org/10.1111/j.1365-3091.1993.tb01384.x