A Characterisation and Evaluation of Urban Areas from an Energy Efficiency Approach, Using Geographic Information Systems in Combination with Life Cycle Assessment Methodology

A Characterisation and Evaluation of Urban Areas from an Energy Efficiency Approach, Using Geographic Information Systems in Combination with Life Cycle Assessment Methodology

S. García-Pérez J. Sierra-Pérez J. Boschmonart-Rives G. Lladó Morales A. Romero Calix

Department of Urbanism and Planning, Escuela de Ingeniería y Arquitectura, Universidad de Zaragoza – Spain.

Centro Universitario de la Defensa de Zaragoza – Spain.

3Sostenipra (ICTA – IRTA - Inèdit Innovació SL) 2014 SGR 1412. Institute of Environmental Science and Technology (ICTA), Unidad de excelencia «María de Maeztu» (MDM-2015-0552), Universitat Autònoma de Barcelona (UAB) – Spain.

Area Metropolitana de Barcelona (AMB) – Spain

Page: 
294-303
|
DOI: 
https://doi.org/10.2495/SDP-V12-N2-294-303
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
1 February 2017
| Citation

OPEN ACCESS

Abstract: 

The retrofitting of less energy efficient building stock represents one of the most significant challenges in the transition to a low-carbon economy. Nowadays, the housing sector represents about 40% of the energy consumption in the European Union. In this regard, the level of insulation installed in buildings is directly related to the energy efficiency of the building, and consequently to the urban area. In addition, several studies have shown that a comprehensive perspective of energy efficiency is needed, together with calculating the importance of introducing Life Cycle Assessment (LCA) methodology. The purpose of this study is to develop a methodology to: first, measure the energy efficiency level of specific urban areas and their buildings using a geospatial model in an integral perspective; and second, the environmental impact caused by the refurbishment of these building façades using a LCA method. On the one hand, according to a bottom-up framework the quantitative and qualitative characterisation of the building stock façade at the urban scale is possible generating a georeferenced spatial data model of buildings using Geographic Information Systems. On the other hand, the environmental impact of the most usual constructive solutions to refurbishment building façades is calculated using the LCA methodology. The results obtained are merged and interpolated to the urban scale. The methodology is tested for the case study of blocks of flats in Barcelona using the open data of building stock from the Spanish Government. Firstly, this methodology provides more information in regard to urban areas as well as calculating their energy efficiency. Secondly, the study measures the renovation impact of the less efficient buildings. Finally, the results provide the basis for supporting decisions on building stock retrofitting for urban scale from a new approach, especially making the selection between various renovation scenarios much clearer.

Keywords: 

carbon footprint, façade, geographical information systems, life cycle assessment, retrofitting, Spain, urban scale

  References

[1] European Comission, Energy performance of Buildings Directive 2010/31/EU (EPDB) 2010.

[2] European Comission, Energy Efficiency Directive 2012/27/EU 2012.

[3] Çomaklı, K. & Yüksel, B., Optimum insulation thickness of external walls for energy saving. Applied Thermal Engineering, 23, pp. 473–479, 2003. http://dx.doi.org/10.1016/S1359-4311(02)00209-0

[4] Sierra-Pérez, J., Boschmonart-Rives, J. & Gabarrell, X., Environmental assessment of façade-building systems and thermal insulation materials for different climatic conditions. Journal of Cleaner Production, 113, pp. 102–113, 2016. http://dx.doi.org/10.1016/j.jclepro.2015.11.090

[5] Sierra-Pérez, J., Boschmonart-Rives, J., Guillén-Lambea, S., Rodriguez-Soria, B. & Gabarrell, X., Environmental implications of cork as thermal insulation in façade retrofits. 10th Conference: Advanced Building Skins Conference, Bern, 2015.

[6] Swan, L.G. & Ugursal, V.I., Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renewable & Sustainable Energy Reviews. 13, pp. 1819–1935, 2009. http://dx.doi.org/10.1016/j.rser.2008.09.033

[7] Mata, É., Sasic Kalagasidis, A. & Johnsson, F., Building-stock aggregation through archetype buildings: France, Germany, Spain and the UK. Build Environement, 81, pp. 270–282, 2014. http://dx.doi.org/10.1016/j.buildenv.2014.06.013

[8] Tuominen, P., Holopainen, R., Eskola, L., Jokisalo, J. & Airaksinen, M., Calculation method and tool for assessing energy consumption in the building stock. Build Environement, 75, pp. 153–160, 2014. http://dx.doi.org/10.1016/j.buildenv.2014.02.001

[9] European Comission, Re-use of public sector information Directive 2003/98/EC 2003.

[10] Mavrogianni, A., Davies, M., Kolokotroni, M. & Hamilton, I., A GIS-based bottom-up space heating model of the London domestic stock. Elev. International IBPSA Conference, Glasgow, pp. 1061–1067, 2009.

[11] Österbring, M., Mata, É., Jonsson, F. & Wallbaum, H., A methodology for spatial modelling of energy and resource use of buildings in urbanized areas. World Sustainable Building Conference WSB14, Barclona, 2014.

[12] Mastrucci, A., Popovici, E., Marvuglia, A., Benetto, E. & Leopold, U., GIS-based life cycle assessment of urban building stocks retrofitting. a bottom-up framework applied to luxembourg. 29th International Conferences Informatics Environmental Protection (EnviroInfo 2015) - Third International Conferences ICT Sustainability (ICT4S 2015), pp. 47–56, 2015.

[13] Cuchí, A. & Sweatman, P., Una visión-país para el sector de la edificación en españa,70, 2011.

[14] Ministerio de Fomento, Análisis de las características de la edificación residencial en España (2001), Madrid, 2013.

[15] Direcció de Serveis Ambientals de l’AMB, Anàlisis dels Teixits Urbans del L’AMB, Barcelona: AMB; 2015.

[16] Dirección General del Catastro, Fichero informático de remisión de catastro (bienes inmuebles urbanos, rústicos y de características especiales), 18, 2011.

[17] Dirección General del Catastro, Modelo de datos de cartografía vectorial (formato shapefile), 2013.

[18] IDAE, Guía IDAE: Manual de fundamentos técnicos de calificación energética de edificios existentes CE3X, Madrid, 2012.

[19] Ministerio de Obras Públicas y Urbanismo, Real Decreto 2429/79, de 6 de julio, por el que se aprueba la Norma Básica de la Edificación NBE-CT-79, sobre Condiciones Térmicas en los edificios, 1979.

[20] Codigo Tecnico de la Edificación (CTE), Documento Básico de Ahorro de Energía (DB-HE) 2006.

[21] BOE, Real Decreto 1020/1993, de 25 de junio, por el que se aprueban las normas técnicas de valoración y el cuadro marco de valores del suelo y de las construcciones para determinar el valor catastral de los bienes inmuebles de naturaleza urbana, Spain, 1993.

[22] QGIS Development Team, QGIS Geographic Information System, Open Source Geospatial Found Proj, 2015.

[23] Rodríguez-Soria, B., Domínguez-Hernández, J., Pérez-Bella, J.M. & del Coz-Díaz, J.J., Quantitative analysis of the divergence in energy losses allowed through building envelopes. Renewable and Sustainable Energy Reviews, 49, pp. 1000–1008. http://dx.doi.org/10.1016/j.rser.2015.05.002

[24] European Committee for Standardization. EN 15804:2012+A1, 2013. Sustainability of construction works - Environmental product declarations – Core rules for the product category of construction products. 2014.

[25] Sierra-Pérez, J., Boschmonart-Rives, J. & Gabarrell, X., Production and trade analysis in the Iberian cork sector: economic characterization of a forest industry. Resource Conservation and Recycling, 98, pp. 55–66, 2015. http://dx.doi.org/10.1016/j.resconrec.2015.02.011

[26] Ministerio de Vivienda, Instituto de Ciencias de la Construcción EduardoTorroja, CSIC. Catálogo de elementos constructivos del CTE, 141, 2008.