A Simplified Aggregate Approach to Design Effective Escape Routes for Buildings

A Simplified Aggregate Approach to Design Effective Escape Routes for Buildings

M. Di Gangi

Department of Civil and Environmental Engineering, Informatics and Applied Mathematics, University of Messina, Italy

31 October 2015
| Citation



In this paper, a specific methodology to define effective escape routes using evacuation time as selection criterion is shown. Feasible solutions are generated and compared in terms of evacuation time computed by means of an aggregate model. The proposed aggregate approach can be easily implemented and allows a prompt first attempt evaluation in case of the lack of commercial software or tools suitable to perform advanced and more sophisticated simulations. Results obtained from simulations are compared with data recorded from an experimentation on a test site conducted in a primary school located in an Italian town; an application of the whole procedure, consisting in designing escape routes for an existing school, is also presented.


evacuation, simulation


[1] Russo, F. & Vitetta, A., Risk evaluation in a transportation system. International Journal of Sustainable Development and Planning, 1 (2), pp. 170–191, 2006. doi: http://dx.doi.org/10.2495/sdp-v1-n2-170-191

[2] Di Gangi, M. & Velonà, P., Deflusso pedonale negli edifici in condizioni di emergenza – modellie metodi per la simulazione, applicazione ad un caso reale. Franco Angeli: Milano, ISBN 9788846490650, 2007.

[3] Russo, F. & Chilà G., Safety of users in road evacuation: demand model. Urban Transport XIII, ed. C.A. Brebbia WIT Press, pp. 773–782 ISBN 9781845640873, 2007.

[4] Russo, F. & Chilà G., A sequential dynamic choice model to simulate demand in evacuation conditions. Proc. of Risk analysis VII & Brownfields V, ed. C.A. Brebbia, WIT Press: Southampton, pp. 431–442, 2010.

[5] Russo, F. & Rindone, C., Evaluation methods for evacuation planning. Proc. of Urban Transport XVI, Urban Transport and the Environment in the 21st century, ed. C.A. Brebbia, WIT Press: Southampton, pp. 335–343, 2010.

[6] Gwynne, S., Galea, E.R., Lawrence, P.J., Owen, M. & Filippidis, L., A review of the methodologies used in the computer simulation of evacuation from the built environment. Building and Environment, 34, pp. 741–749, 1999. doi: http://dx.doi.org/10.1016/s0360-1323(98)00057-2

[7] Fire Model Survey, International Survey of Computer Models for Fire and Smoke [online], available at http://www.firemodelsurvey.com/EgressModels.html (accessed 2007).

[8] Kuligowski, E.D. & Peacock, R.D. A Review of Building Evacuation Models. Technical note no. 1471. National Institute of Standards and Technology, Gaithesburgh, MD, 2005.

[9] Olenick, S.M. & Carpenter, D.J., An updated international survey of computer models for fire and smoke. Journal of Fire Protection Engineering, 13, pp. 87–110, 2003. doi: http://dx.doi.org/10.1177/1042391503013002001

[10] Burstedde, C., Klauck, K., Schadschneider, A. & Zittartz, J., Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A, 295, pp. 507–525, 2001. doi: http://dx.doi.org/10.1016/s0378-4371(01)00141-8

[11] Yuan, W. & Tan, K.H., A novel algorithm of simulating multi-velocity evacuation based on cellular automata modeling and tenability condition. Physica A, 379, pp. 250–262, 2007. doi:http://dx.doi.org/10.1016/j.physa.2006.12.044

[12] Varas, A., Cornejo, M.D., et al., Cellular automaton model for evacuation process with obstacles. Physica A, 382, pp. 631–642, 2007. doi: http://dx.doi.org/10.1016/j.physa.2007.04.006

[13] Weng, W.G., Chen, T., Yuan, H.Y. & Fan, W.C., Cellular automaton simulation of pedestrian counter flow with different walk velocities. Physical Review E, 74, 036102, 2006. doi: http://dx.doi.org/10.1103/physreve.74.036102

[14] Yang, L.Z., Zhao, D.L., Li, J. & Fang, T.Y., Simulation of the kin behavior in building occupant evacuation based on cellular automaton. Building and Environment, 40, pp. 411–415, 2005. doi: http://dx.doi.org/10.1016/j.buildenv.2004.08.005

[15] Zhao, D.L., Yang, L.Z. & Li, J., Occupants’ behavior of going with the crowd based on cellular automata occupant evacuation model. Physica A, 387, pp. 3708–3718, 2008. doi: http://dx.doi.org/10.1016/j.physa.2008.02.042

[16] Kirchner, A., Nishinari, K. & Schadschneider, A., Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Physical Review E, 67, 056122, 2003. doi: http://dx.doi.org/10.1103/physreve.67.056122

[17] Henein, C.M. & White, T., Macroscopic effects of microscopic forces between agents in crowd models. Physica A, 373, pp. 694–712, 2007. doi: http://dx.doi.org/10.1016/j.physa.2006.06.023

[18] Tajima, Y., Takimoto, K. & Nagatani, T., Pattern formation and jamming transition in pedestrian counter flow. Physica A, 313, pp. 709–723, 2002. doi: http://dx.doi.org/10.1016/s0378-4371(02)00965-2

[19] Helbing, D., Isobe, M., Nagatani, T. & Takimoto, K., Lattice gas simulation of experimentally studied evacuation dynamics. Physical Review E, 67, 067101, 2003. doi: http://dx.doi.org/10.1103/physreve.67.067101

[20] Isobe, M., Adachi, T. & Nagatani, T., Experiment and simulation of pedestrian counter flow. Physica A, 336, 638–650, 2004. doi: http://dx.doi.org/10.1016/j.physa.2004.01.043

[21] Nagai, R., Nagatani, T., Isobe, M. & Adachi, T., Effect of exit configuration on evacuation of a room without visibility. Physica A, 343, 712–724, 2004. doi: http://dx.doi.org/10.1016/s0378-4371(04)00851-9

[22] Zhang, J., Song, W. & Xu, X., Experiment and multi-grid modeling of evacuation from a classroom. Physica A, 387, 5901–5909, 2008. doi: http://dx.doi.org/10.1016/j.physa.2008.06.030

[23] Nagatani, T., Dynamical transition and scaling in a mean-field model of pedestrian flow at a bottleneck. Physica A, 300, 558–566, 2001. doi: http://dx.doi.org/10.1016/s0378-4371(01)00366-1

[24] Helbing, D. & Molnár, P., Social force model for pedestrian dynamics. Physical Review E, 51, 4282–4286, 1995. doi: http://dx.doi.org/10.1103/physreve.51.4282

[25] Kirchner, A. & Schadschneider, A., Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A, 312, 260–276, 2002. doi: http://dx.doi.org/10.1016/s0378-4371(02)00857-9

[26] Helbing, D., Farkas, I.J., Molnár, P. & Vicsek, T., Simulation of pedestrian crowds in normal and evacuation situations. Pedestrian and Evacuation Dynamics, eds. M. Schreckenberg and S.D. Sharma, Springer, pp. 21–58, 2002.

[27] Yang, L.Z., Fang, W.F. & Fan, W.C., Modeling occupant evacuation using cellular automata – effect of human behavior and building characteristics on evacuation. Journal of Fire Science, 21, 227–240, 2003. doi: http://dx.doi.org/10.1177/0734904103021003004

[28] Zhao, D.L., Yang, L.Z., Li, J., Zhu, Y. & Zou, L., Relationship between performancebased design of building exits and state transition of pedestrian flow during occupant evacuation. Journal of Fire Protection Engineering, 16, 269–281, 2006. doi: http://dx.doi.org/10.1177/1042391506061523

[29] ASERI (Advance Simulation of Evacuation of Real Individuals). A model to simulate evacuation and egress movement based on individual behavioural response, available at http://www.ist-net.de, 2004.

[30] Gwynne, S., Galea, E.R., Lawrence, P. & Filippidis, L., A systematic comparison of model predictions produced by the building EXODUS evacuation model and the Tsukuba Pavilion evacuation data. Applied Fire Science, 7, pp. 235–266, 1998. doi: http://dx.doi.org/10.2190/6w20-vm9d-y3f2-qghe

[31] Parke, J., Gwynne, S., Galea, E.R. & Lawrence, P., Validating the building EXODUS evacuation model using data from an unannounced trial evacuation. Proceedings of 2nd International Pedestrian and Evacuation Dynamics Conference, ed. E.R. Galea, CMS Press; Greenwich, UK ISBN 1904521088, pp. 295–306, 2003.

[32] Fraser-Mitchell, J., Simulated evacuations of an airport terminal building, using the CRISP model. 2nd International Symposium in Human Behaviour in Fire, Boston, MA, pp. 89–100. 2001.

[33] Ketchell, N., Cole, S.S. & Webber, D.M., The EGRESS code for human movement and behaviour in emergency evacuation. Engineering for Crowd Safety, eds R.A. Smith & J.F. Dickie, Elsevier: London, pp. 361–370. 1994.

[34] Francis, R.L. & Saunders, P.B., EVACNET: Prototype Network Optimization Models for Building Evacuation (Rep. No. NBSIR 79-1593). Natational Bureau Standards (U.S.), 1979.

[35] Fahy, R.F., EXIT89 – an evacuation model for high-rise buildings – model description and example applications. Fire Safety Science – Proceedings of the 4th International Symposium, pp. 657–668, 1994. doi: http://dx.doi.org/10.3801/iafss.fss.4-657

[36] Levin, B.M., EXITT – a simulation model of occupant decisions and actions in residential fires. Fire Safety Science – Proceedings of the Second International Symposium, pp. 561–570, 1988. doi: http://dx.doi.org/10.3801/iafss.fss.2-561

[37] Bensilum, M. & Purser, D.A., Gridflow: an object-oriented building evacuation model combining pre-movement and movement behaviours for performance-based design. 7th International Symposium on Fire Safety Science Worcester, Worcester Polytechnic Institute: MA, 2002.

[38] Berrou, J.L., Beecham, J., Quaglia, P., Kagarlis, M.A. & Gerodimos, A., Calibration and validation of the Legion simulation model using empirical data, Available at http://www.legion.com/about-us/Publications.php, 2005.

[39] Cappuccio, J., Pathfinder: a computer-based timed egress simulation. Fire Protection Engineering, 8, pp. 11–12, 2000.

[40] Klupfel, H. & Meyer-König, T., Characteristics of the PedGo software for crowd movement and egress simulation. . Proceedings of 2nd International Pedestrian and Evacuation Dynamics Conference, ed. E.R. Galea, CMS Press, Greenwich, UK, ISBN 1904521088, pp. 331–340, 2003.

[41] Meyer-König, T., Klupfel, H. & Schreckenberg, M., A microscopic model for simulating mustering and evacuation process onboard passenger ships. Proceedings of the International Emergency Management Society Conference, 2001. doi: http://dx.doi.org/10.1007/978-1-4471-0709-5_8

[42] Buckmann, L.T. & Leather, J., Modelling station congestion the PEDROUTE way. Traffic Engineering and Control, 35, pp. 373–377, 1994.

[43] Barton, J. & Leather, J., Paxport – passenger and crowd simulation. Passenger Terminal ‘95, pp. 71–77, 1995.

[44] Di Gangi, M., Russo, F. & Vitetta, A., A mesoscopic method for evacuation simulation on passenger ships: models and algorithms. Pedestrian and Evacuation Dynamics 2003, CMS Press: London, ISBN 1-904521-08-8, pp. 197–208, 2003.

[45] Oven, V.A. & Cakici, N., Modelling the evacuation of a high-rise office building in Istanbul. Fire Safety Journal, 44, pp. 1–15, 2009. doi: http://dx.doi.org/10.1016/j.firesaf.2008.02.005

[46] Proulx, G., Evacuation time and movement in apartment buildings. Fire Safety Journal, 24(3), 1995, pp. 229–246. doi: http://dx.doi.org/10.1016/0379-7112(95)00023-m

[47] Smith, R.A., Density, velocity and flow relationships for closely packed crowds. Safety Science, 18(4), 1995, pp. 321–327. doi: http://dx.doi.org/10.1016/0925-7535(94)00051-4

[48] Fang, Z., Lob, S.M. & Luc, J.A., On the relationship between crowd density and movement velocity. Fire Safety Journal, 18(3), pp. 271–283, 2003

[49] Kholshevnikov, V.V., Shields T.J., Boyce, K.E. & Samoshin, D.A., Recent developments in pedestrian flow theory and research in Russia. Fire Safety Journal, 43, pp. 108–118, 2008. doi: http://dx.doi.org/10.1016/j.firesaf.2007.05.005

[50] Hughes, R.L., A continuum theory for the flow of pedestrians. Transportation Research Part B, 36, pp. 507–535, 2002. doi: http://dx.doi.org/10.1016/s0191-2615(01)00015-7

[51] Huang, L., Wong, S.C., Zhang, M., Shu, C. & Lam, W.H.K., Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transportation Research Part B, 43(1), pp. 127–141, 2009. doi: http://dx.doi.org/10.1016/j.trb.2008.06.003

[52] Yen, J.Y., The k shortest loopless paths in a network. Management Science, 17(11), pp. 712–716, 1971. doi: http://dx.doi.org/10.1287/mnsc.17.11.712

[53] Gallo G. & Pallottino, S., Shortest path algorithms. Annals of Operational Research, 13, pp. 3–79, 1988. doi: http://dx.doi.org/10.1007/bf02288320

[54] Eppstein, D., Bibliography on algorithms for k shortest paths, available at: http://liinwww.ira.uka.de/bibliography/Theory/k-path.html, updated until 2001.

[55] Di Gangi, M., Evaluation of reliable path in risk areas. Risk Analysis V, WIT Press: Southampton, UK, pp. 371–377, 2006.

[56] Di Gangi, M., Musolino, G., Rindone, C. & Vitetta, A., An Italian project for exposure reduction in an urban area: experimentation design and DSS development. Proceedings of European Transport Conference, Strasbourg, September 2006, ISBN/ISSN: 1-905701-01-2, 2006.

[57] Di Gangi, M., Approaching the analysis of transport networks in emergency conditions for the design of evacuation plans. Risk Analysis IV, WIT Press. ISBN 1-85312-736-1, pp. 485–494, 2006.

[58] Di Gangi, M., Planning evacuation by means of a multi-modal mesoscopic dynamic traffic simulation model., Geocomputation & Urban Planning, SCI 176, eds. B. Murgante, G. Borruso & A. Lapucci, Springer-Verlag: Berlin, Heidelberg, ISBN: 978-3-540-89929-7, pp. 99–115, 2009.

[59] Di Gangi, M. & Velonà, P., Multimodal mesoscopic approach in modelling pedestrian evacuation. Transportation Research Record, 2090, 2009; pp. 51-58. ISSN: 0361-1981, doi: 10.3141/2090-06.

[60] Di Gangi, M., Modeling evacuation of a transport system: application of a multimodal mesoscopic dynamic traffic assignment model. IEEE Transactions on Intelligent Transportation Systems, 12(4), pp. 1157–1166, 2011. doi: 10.1109/TITS.2011.2143408.

[61] Di Gangi, M., Designing escape routes for buildings through an aggregate approach, WIT Transactions on Ecology and the Environment, 173, pp. 791–802 doi: 10.2495/SDP130661.