A Review of Convective and Artificial Vortices for Power Generation

A Review of Convective and Artificial Vortices for Power Generation

A.T.Mustafa H.H.Al-Kayiem  S.I.U.Gilani 

Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Malaysia 31750 Tronoh, Perak, Malaysia

Page: 
650-665
|
DOI: 
https://doi.org/10.2495/SDP-V10-N5-650-665
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
31 October 2015
| Citation

OPEN ACCESS

Abstract: 

Thermal energy transfer in the atmosphere occurs from a high temperature zone to a low one by means of convective vortices where mechanical energy is produced. There are two ways of driving vertical flow in the core of a vortex: (1) by the direct action of buoyancy acting on hot air and (2) by producing a vertical pressure gradient along the axis of a vortex because of core development involving the lateral spread of the vortex with height. In particular, it indicates that the intensity of convective vortices depends on the depth of the convective layer via thermodynamic efficiency, the enthalpy perturbation across them, and the existence of sources of vorticity. The atmospheric vortex engine (AVE) is a device for producing an artificial vortex. The operation of AVE is based on the fact that the atmosphere is heated from the bottom and cooled at the top. By artificial vortex generation, it is aimed to eliminate the physical solar updraft tower and reduce the capital cost of solar chimney power plants. This paper reviews natural convective vortices and vortex creation via physical principles of vortex generation. Vortex analysis and modelling are presented. Furthermore, a new model of a solar vortex engine (SVE) is proposed and discussed. An idea on utilizing the solar energy as the heat source for establishing the vortex and operating the SVE model is adopted. The SVE model is feasible and promising for electrical power generation.

Keywords: 

Artificial vortex, convective vortices, solar vortex engine, tornado, vortex analysis

  References

[1] Emanuel, K.A., Atmospheric Convection, Oxford University Press, 1994.

[2] Ninic, N., Available energy of the air in solar chimneys and the possibility of its ground-level concentration. Solar Energy, 80(7), pp. 804–811, 2006. doi: http://dx.doi.org/10.1016/j.solener.2005.05.010

[3] Schlaich, J. et al., The Solar Chimney—Transferability of Results from the Manzanares Solar Chimney Plant to Larger Scale-Plants, Tech. Rep., Schlaich Bergermann und Partner, Civil Engineers, Stuttgart, Germany, Cited on pages 5 and 33, 1995.

[4] Schlaich, J. et al., Sustainable electricity generation with solar updraft towers. Structural Engineering International, 14(3), pp. 225–229, 2004. doi: http://dx.doi.org/10.2749/101686604777963883

[5] Schlaich, J. et al., Design of commercial solar updraft tower systems-utilization of solar induced convective flows for power generation. Transactions of the ASME-N-Journal of Solar Energy Engineering, 127(1), pp. 117–124, 2005. doi: http://dx.doi.org/10.1115/1.1823493

[6] Koonsrisuk, A., Lorente, S. & Bejan, A., Constructal solar chimney configuration. International Journal of Heat and Mass Transfer, 53(1), pp. 327–333, 2010. doi: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.09.026

[7] Zhou, X., Wang, F. & Ochieng, R.M., A review of solar chimney power technology. Renewable and Sustainable Energy Reviews, 14(8), pp. 2315–2338, 2010.

[8] Michaud, L.M., Proposal for Use a Controlled Tornado-Like Vortex to Capture Mechanical Energy Produced in Atmosphere from Solar-Energy, Amer Meteorological Soc: Boston, MA, pp. 530–534, 1975.

[9] Michaud, L.M., On the energy and control of atmospheric vortices. J. Rech. Atmos., pp. 11, 99–120, 1977.

[10] Michaud, L., Heat to work conversion during upward heat convection part I: Carnot engine method. Atmospheric Research, 39(1), pp. 157–178, 1995. doi: http://dx.doi.org/10.1016/0169-8095(95)00010-o

[11] Michaud, L., Heat to work conversion during upward heat convection part II: internally generated entropy method. Atmospheric Research, 41(2), pp. 93–108, 1996. doi: http://dx.doi.org/10.1016/0169-8095(95)00073-9

[12] Rennó, N.O., A thermodynamically general theory for convective vortices. Tellus A, 60(4), pp. 688–699. doi: http://dx.doi.org/10.1111/j.1600-0870.2008.00331.x

[13] Makarieva, A.M., Gorshkov, V.G. & Nefiodov, A.V., Condensational theory of stationary tornadoes. Physics Letters A, 375(24), pp. 2259–2261, 2011. doi: http://dx.doi.org/10.1016/j.physleta.2011.04.023

[14] Rennó, N.O. & Ingersoll, A.P., Natural convection as a heat engine: a theory for CAPE. Journal of the Atmospheric Sciences, 53(4), pp. 572–585, 1996. doi: http://dx.doi.org/10.1175/1520-0469(1996)053<0572:ncaahe>2.0.co;2

[15] Rennó, N.O., Burkett, M.L. & Larkin, M.P., A simple thermodynamical theory for dust devils. Journal of the Atmospheric Sciences, 55(21), pp. 3244–3252, 1998. doi: http://dx.doi.org/10.1175/1520-0469(1998)055<3244:asttfd>2.0.co;2

[16] Rennó, N.O. & Bluestein, H.B., A simple theory for waterspouts. Journal of the Atmospheric Sciences, 58(8), pp. 927–932, 2001. doi: http://dx.doi.org/10.1175/1520-0469(2001)058<0927:as tfw>2.0.co;2

[17] Ninic, N. & Nizetic, S., Elementary theory of stationary vortex columns for solar chimney power plants. Solar Energy, 83(4), pp. 462–476, 2009. doi: http://dx.doi.org/10.1016/j.solener.2008.09.002

[18] Ninic, N. & Nizetic, S., Solar power plant with short diffuser, WO Patent 2,009,060,245, 2009.

[19] Nižetic´, S., An atmospheric gravitational vortex as a flow object: improvement of the threelayer model. Geofizika, 27(1), pp. 1–20, 2010.

[20] Nizetic, S., Technical utilisation of convective vortices for carbon-free electricity production: a review. Energy, 36(2), pp. 1236–1242, 2011. doi: http://dx.doi.org/10.1016/j.energy.2010.11.021

[21] Schielicke, L. & Névir, P., On the theory of intensity distributions of tornadoes and other low pressure systems. Atmospheric Research, 93(1), pp. 11–20, 2009. doi: http://dx.doi.org/10.1016/j.atmosres.2008.09.021

[22] Yershin, S.A. & Yershina, A., Tornado, twisters—secondary currents within the atmosphere. Mathematics and Computers in Simulation, 67(4), pp. 327–334, 2004. doi: http://dx.doi.org/10.1016/j.matcom.2004.06.008

[23] Brázdil, R., et al., The tornado history of the Czech Lands, AD 1119–2010. Atmospheric Research, 118, pp. 193–204, 2012. doi: http://dx.doi.org/10.1016/j.atmosres.2012.06.019

[24] Goliger, A. & Milford, R., A review of worldwide occurrence of tornadoes. Journal of Wind Engineering and Industrial Aerodynamics, 74, pp. 111–121, 1998. doi: http://dx.doi.org/10.1016/s0167-6105(98)00009-9

[25] Varaksin, A., Romash, M.E., Kopeitsev, V.N. & Gorbachev, M.A., Experimental study of wall-free non-stationary vortices generation due to air unstable stratification. International Journal of Heat and Mass Transfer, 55(23–24), pp. 6567–6572, 2012. doi: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.06.063

[26] Navarro, M. & Herrero, H., Vortex generation by a convective instability in a cylindrical annulus non-homogeneously heated. Physica D: Nonlinear Phenomena, 240(14), pp. 1181–1188, 2011. doi: http://dx.doi.org/10.1016/j.physd.2011.04.009

[27] Michaud, L., Thermodynamic cycle of the atmospheric upward heat convection process. Meteorology and Atmospheric Physics, 72(1), pp. 29–46, 2000. doi: http://dx.doi.org/10.1007/s007030050003

[28] Michaud, L., Entrainment and detrainment required to explain updraft properties and work dissipation. Tellus A, 50(3), pp. 0283–0301, 1998. doi: http://dx.doi.org/10.1034/j.1600-0870.1998.t01-2-00003.x

[29] Michaud, L., Vortex process for capturing mechanical energy during upward heat-convection in the atmosphere. Applied Energy, 62(4), pp. 241–251, 1999. doi: http://dx.doi.org/10.1016/s0306-2619(99)00013-6

[30] Long, R.R., A Vortex in an Infinite Viscous Fluid, Cambridge University Press, 1961.

[31] Kuo, H., On the dynamics of convective atmospheric vortices. Journal of the Atmospheric Sciences, 23(1), pp. 25–42, 1966. doi: http://dx.doi.org/10.1175/1520-0469(1966)023<0025:ot doca>2.0.co;2

[32] Takhar, H., Mathematical models of the geophysical vortices. Proc. Mathematical Models in Geophysics Sympos, pp. 181–200, 1976.

[33] Takhar, H.S. & Bég, O.A., Mathematical modeling of geophysical vortex flow. International Journal of Fluid Mechanics Research, 32(4), 2005. doi: http://dx.doi.org/10.1615/interjfluidmechres.v32.i4.40

[34] Davies-Jones, R.P. & Wood, V.T., Simulated Doppler velocity signatures of evolving tornadolike vortices. Journal of Atmospheric and Oceanic Technology, 23(8), pp. 1029–1048, 2006. doi: http://dx.doi.org/10.1175/jtech1903.1

[35] Kolárˇ, V., Vortex identification: new requirements and limitations. International Journal of Heat and Fluid Flow, 28(4), pp. 638–652, 2007. doi: http://dx.doi.org/10.1016/j.ijheatfluidflow.2007.03.004

[36] Berson, A., Michard, M. & Blanc-Benon, P., Vortex identification and tracking in unsteady flows. Comptes Rendus Mécanique, 337(2), pp. 61–67, 2009. doi: http://dx.doi.org/10.1016/j.crme.2009.03.006

[37] Arsen’yev, S.A., Mathematical modeling of tornadoes and squall storms. Geoscience Frontiers, 2(2), pp. 215–221, 2011. doi: http://dx.doi.org/10.1016/j.gsf.2011.03.007

[38] Emanuel, K.A., The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. Journal of the Atmospheric Sciences, 52(22), pp. 3960–3968, 1995. doi: http://dx.doi.org/10.1175/1520-0469(1995)052<3960:tboash>2.0.co;2

[39] Mustafa, A., Al-Kayiem, H.H. & Gilani, S.I.-U.-H., A review of the vortex engine. WIT Transactions on Ecology and the Environment, 179, 2013. doi: http://dx.doi.org/10.2495/sc130772

[40] Michaud, L.M., The atmospheric vortex engine. Science and Technology for Humanity (TIC-STH), 2009 IEEE Toronto International Conference, IEEE, 2009. doi: http://dx.doi.org/10.1109/tic-sth.2009.5444355

[41] Michaud, L.M., Atmospheric vortex engine, Google Patents, 2006.

[42] Natarajan, D., Numerical Simulation of Tornado-like Vortices, 2011.

[43] Natarajan, D. & Hangan, H., Numerical study on the effects of surface roughness on tornadolike flows. 11th Americas Conference on Wind Engineering (11ACWE), 2009.

[44] [44] Park, S.I. & Kim, M.J., Vortex fluid for gaseous phenomena. Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, 2005.

[45] Qian, F. & Zhang, M., Study of the natural vortex length of a cyclone with response surface methodology. Computers & Chemical Engineering, 29(10), pp. 2155–2162, 2005. doi: http://dx.doi.org/10.1016/j.compchemeng.2005.07.011

[46] Kuai, L. et al., CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements. Wind and Structures, 11(2), pp. 75–96, 2008. doi: http://dx.doi.org/10.12989/was.2008.11.2.075

[47] Hashemi Tari, P., Gurka, R. & Hangan, H., Experimental investigation of tornado-like vortex dynamics with swirl ratio: the mean and turbulent flow fields. Journal of Wind Engineering and Industrial Aerodynamics, 98(12), pp. 936–944, 2010. doi: http://dx.doi.org/10.1016/j.jweia.2010.10.001

[48] Maruyama, T., A numerically generated tornado-like vortex by large eddy simulation. Proceedings of 7th Asia Pacific Conference on Wind Engineering, Taipei, Taiwan, 2009.

[49] Maruyama, T., Simulation of flying debris using a numerically generated tornado-like vortex. Journal of Wind Engineering and Industrial Aerodynamics, 99(4), pp. 249–256, 2011. doi: http://dx.doi.org/10.1016/j.jweia.2011.01.016

[50] Schecter, D.A., In search of discernible infrasound emitted by numerically simulated tornadoes. Dynamics of Atmospheres and Oceans, 57, 2012. doi: http://dx.doi.org/10.1016/j.dynatmoce.2012.06.001

[51] Ishihara, T., Oh, S. & Tokuyama, Y., Numerical study on flow fields of tornado-like vortices using the LES turbulence model. Journal of Wind Engineering and Industrial Aerodynamics,99(4), pp. 239–248, 2011. doi: http://dx.doi.org/10.1016/j.jweia.2011.01.014