Steady state pressure driven fluid flow in a cylindrical tube filled with bidisperse porous medium

Steady state pressure driven fluid flow in a cylindrical tube filled with bidisperse porous medium

Basant K. JhaMuhammad K. Musa 

Department of Mathematics, Ahmadu Bello University, Zaria 810001, Nigeria

Corresponding Author Email: 
mmkabirxy@yahoo.com
Page: 
1423-1429
|
DOI: 
https://doi.org/10.18280/ijht.360434
Received: 
20 January 2018
| |
Accepted: 
17 October 2018
| | Citation

OPEN ACCESS

Abstract: 

This article presents a model for fluid flow in a cylindrical tube filled with a Bi-disperse Porous Medium (BDPM). The model is a modified Brinkman model where the conventional single solid porous structure is replaced with a porous matrix having a dual porous phases (the fracture and porous phases). The fluid velocities Uf  and Up  in the fracture and porous phases respectively of the BDPM are coupled together by the coefficient of momentum transfer (η). Exact solutions in terms of modified Bessel functions for the velocity fields in the fracture and porous phases for any arbitrary value of η using D’Alembert method as well as for the limiting cases η=0 and η→∞have been obtained. The study establishes that increasing the momentum transfer coefficient suppresses (enhances) the fluid velocity in the fracture (porous) phases of the BDPM.

Keywords: 

applied constant pressure gradient, Bidisperse porous medium, coefficient of momentum transfer, D’Alembert method, Horizontal tube

1. Introduction
2. Mathematical Analysis
3. Skin Friction
4. Results and Discussion
5. Conclusion
Nomenclature
  References

[1] Jha BK, Musa MK. (2011). Time dependent natural convection Couette flow of heat generating/absorbing. Fluid between infinite vertical Parallel plates filled with Porous material. Journal of the Nig. Association of Mathematical Physics 19(2011): 233-248.

[2] Jha BK, Musa MK. (2012). Unsteady natural convection Couette flow of heat generating/absorbing fluid between infinite vertical Parallel plates filled with porous material. Appl. Math Mech. (English. Ed) 33(3): 303-314. https://doi.org/10.1007/s10483-012-1551-8

[3] Vortmeyer D, Schuster J. (1983): Evaluation of steady flow profile in a rectangular and circular packed beds. Chem. Engng. Sci. 38(1983): 1691-1699. https://doi.org/10.1016/0009-2509(83)85026-X

[4] Paul T, Singh AK, Mishra AK. (2001). Transient natural convection between two vertical walls filled with a porous material having variable porosity. Math, Engng. Ind. 8(3): 177-185.

[5] Vafai K, Tien CL. (1981). Boundary and inertia effects on flow and heat transfer in porous media. Intl. J. Heat Mass Transfer 24(1981): 195-203. http://dx.doi.org/10.1016/0017-9310(81)90027-2

[6] Vafai K. (1984). Convective flow and heat transfer in variable-porosity media. Journal of Fluid Mech. 147(1984): 233-259. http://dx.doi.org/10.1017/S002211208400207X

[7] Butler SL, Kohles SS, Thielke RJ, Chen C, Vanderby R. (1997). Interstitial fluid flow in tendons or ligaments: A porous medium finite element simulation. Med. Biol, Eng. Comput. 35(1997): 742-746. http://dx.doi.org/10.1007/BF02510987

[8] Warren J, Root P. (1963). The behavior of naturally fractured reservoirs. Soc. Petrol. Eng. J. 3(1963): 245–255. http://dx.doi.org/10.2118/426-PA

[9] Arbogast T, Douglas J, Hornung U. (1990). Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21(1990): 823-836. http://dx.doi.org/10.1137/0521046

[10] Avraam DG, Payatakes AC. (1995). Generalized relative permeability coefficients during steady state two- phase flow in porous media, correlation with flow mechanisms. Transport in Porous Media 20(1): 135-168. https://doi.org/10.1007/BF00616928

[11] Dietrich P, Helming R, Sauter M, Hölzl H, Köngeter J. Teutsch G. (2005). Flow and transport in fractured porous media. Springer Velarg. http://dx.doi.org/10.1007/b138453

[12] Hassanizadeh SM, Gray WG. (1990). Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour 13(1990): 169-186. http://dx.doi.org/10.1016/0309-1708(90)90040-B

[13] Bourgeat A, Luckhaus S, Mikeli´c A. (1996). Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow. SIAM J. Math. Anal. 27(1996): 1520–1543. http://dx.doi.org/10.1137/S0036141094276457

[14] Kaviany K. (1991). Principle of heat transfer in porous media. Springer-Verlog, New York. http://dx.doi.org/10.1007/978-1-4684-0412-8

[15] Nield DA, Bejan A. (1999). Convection in porous media. 2nd Ed. Springer-Verlog, New York.

[16] Nield DA, Kuznetsov AV. (2013). A note on modelling high speed flow in a Bidisperse porous medium. Transport Porous Medium 96(2013): 495-499. https://doi.org/10.1007/s11242-012-0102-1

[17] Chen ZQ, Cheng P, Hsu CT. (2000). A theoretical and experimental study on stagnant thermal conductivity of Bi-disperse porous media. Int. Commun. Heat Mass Transfer 27(2000): 601-610. https://doi.org/10.1016/S0735-1933(00)00142-1

[18] Nield DA, Kuznetsov AV. (2005). A two velocity two temperature model for a Bidisperse porous medium: Forced convection in a channel. Transport Porous Medium 59(2005): 325-339. http://dx.doi.org/10.1007/s11242-004-1685-y

[19] Nield DA, Kuznetsov AV. (2011). Forced convection in a channel partly occupied in a Bidisperse porous medium: Symmetric case. ASME Jr. of Heat Transfer 133(2011): 072601.1-072601.9. https://doi.org/10.1115/1.4003667

[20] Magyari E. (2013). Normal mode analysis of high speed channel flow in a Bidisperse porous media. Transport Porous Media 97(2013): 345-352. http://dx.doi.org/10.1007/s11242-013-0127-0

[21] Cheng CY. (2014). Free convection boundary layer flow over a vertical wavy surface embedded in a Bidisperse porous media. Proceedings for World Congress Engineering 2(2014): 1381-1386.

[22] Ziyaddin R, Huseyin K. (2007). Two-phase steady flow along a horizontal glass pipe in the presence of the magnetic and electrical fields. Int. Journal of Heat and Fluid Flow 29(2007): 263-268. https://doi.org/10.1016/j.ijheatfluidflow.2007.09.003