Heat transfer enhancement with nanofluids: A review of recent applications and experiments

Heat transfer enhancement with nanofluids: A review of recent applications and experiments

Izza A. IsmailMohd Z. Yusoff Firas B. Ismail Prem Gunnasegaran 

Department of Mechanical Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia

Corresponding Author Email: 
izzaadillah@gmail.com
Page: 
1350-1361
|
DOI: 
https://doi.org/10.18280/ijht.360426
Received: 
19 August 2017
| |
Accepted: 
24 October 2018
| | Citation

OPEN ACCESS

Abstract: 

Since the 1990’s, nanofluids have been one of the abundantly preferred newcomer technology invented to assist in electronic and heat transfer purposes. Their thermophysical properties and heat transfer performance make nanofluids highly demanded to overcome the current issues in the world. In this paper, a vast number of applications using nanofluids are reviewed as well as an epitome on the challenges in their respective areas. Additionally, recent research papers for specific applications of nanofluids in improving heat transfer efficiency were outlined while the experimental and theoretical methods were discussed in the articles and journals is summarized in this paper including the effects of thermal properties on the performance of nanofluids. In a nutshell, this review of experimental research extracted from most recent papers, published from 2011 to 2016, is a review on the latest updates in the nanofluids and heat transfer community to help anyone in concern of the topic and enough information to select nanofluids based on their needed applications.

Keywords: 

nanofluid, thermal conductivity, applications of nanofluids, heat transfer enhancement

1. Introduction
2. Overview of Applications of Nanofluids
3. Research Method Analysis
4. Research Results Analysis: Thermal Conductivity
5. Discussion
6. Conclusions
Acknowledgement
Nomenclature
  References

[1] Choi SU. (1998). Nanofluid technology : To be presented at the second Korean-American scientists and engineers association research. Technology.

[2] Puliti G, Paolucci S, Sen M. (2012). Nanofluids and their properties. Appl. Mech. Rev 64(3): 30803.

[3] Sheikholeslami M, Ganji DD. (2015). Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput. Methods Appl. Mech. Eng. 283: 651-663. https://doi.org/10.1016/j.cma.2014.09.038

[4] Sheikholeslami M, Ashorynejad HR, Rana P. (2016). Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation. J. Mol. Liq 214: 86-95. https://doi.org/10.1016/j.molliq.2015.11.052

[5] Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S. (2013). Effect of a magnetic field on natural convection in an inclined half-annulus enclosure filled with Cu-water nanofluid using CVFEM. Adv. Powder Technol 24(6): 980-991. https://doi.org/10.1016/j.apt.2013.01.012

[6] Tohidi A, Ghaffari H, Nasibi H, Mujumdar AS. (2015). Heat transfer enhancement by combination of chaotic advection and nanofluids flow in helically coiled tube. Appl. Therm. Eng 86: 91-105. https://doi.org/10.1016/j.applthermaleng.2015.04.043

[7] For V. Hybrid Radiator-Cooling System.

[8] Dubouil R, Hetet JF, Maiboom A. (2013). A phenomenological heat transfer model of si engines - application to the simulation of a full-hybrid vehicle. Oil Gas Sci. Technol. D Ifp Energies Nouv 68(1): 51-63. https://doi.org/10.2516/ogst/2012031

[9] Huminic G, Huminic A. (2012). Application of nanofluids in heat exchangers: A review. Renew. Sustain. Energy Rev 16(8): 5625-5638. https://doi.org/10.1016/j.rser.2012.05.023

[10] Wong KV, Leon OD. (2010). Applications of nanofluids: Current and future. Adv. Mech. Eng 2010(January): 0-11. https://doi.org/10.1155/2010/519659

[11] Varga G. Development and demonstration of nanofluids for industrial cooling applications please contact.

[12] Buongiorno J, Hu LW, Kim SJ, Hannink R, Truong B, Forrest E. (2008). Nanofluids for enhanced economics and safety of nuclear reactors: An evaluation of the potential features, issues, and research gaps. Nucl. Technol 162(1): 80-91. https://doi.org/10.1016/j.nimb.2007.10.042

[13] Hadad K, Rahimian A, Nematollahi MR. (2013). Numerical study of single and two-phase models of water/Al2O3 nanofluid turbulent forced convection flow in VVER-1000 nuclear reactor. Ann. Nucl. Energy 60: 287-294. https://doi.org/10.1016/j.anucene.2013.05.017

[14] Zhou M, Lin TQ, Huang FQ, Zhong YJ, Wang Z, Tang YF, Bi H. (2013). Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv. Funct. Mater 23(18): 2263-2269. https://doi.org/10.1002/adfm.201202638

[15] Saidur R, Leong KY, Mohammad HA. (2011). A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev 15(3): 1646-1668. https://doi.org/10.1016/j.rser.2010.11.035

[16] Rashmi W, Ismail AF, Khalid M, Faridah Y. (2011). CFD studies on natural convection heat transfer of Al2O3 -water nanofluids. January 1301-1310.

[17] Saxena R, Gangacharyulu D, Bulasara VK. (2016). Heat transfer and pressure drop characteristics of dilute alumina–water nanofluids in a pipe at different power inputs. Heat Transf. Eng 7632(February): 00–00. https://doi.org/10.1080/01457632.2016.1151298

[18] Myers PD, Alam TE, Kamal R, Goswami DY, Stefanakos E. (2016). Nitrate salts doped with CuO np for thermal energy storage with improved heat transfer. Appl. Energy 165: 225-233. https://doi.org/10.1016/j.apenergy.2015.11.045

[19] Vajjha RS, Das DK, Ray DR. (2014). Development of new correlations for the Nusselt number and the friction factor under turbulent flow of nanofluids in flat tubes. Int. J. Heat Mass Transf 80(March 2016): 353-367. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.018

[20] Gunnasegaran P, Shuaib NH, Abdul Jalal MF. (2012). The effect of geometrical parameters on heat transfer characteristics of compact heat exchanger with louvered fins. ISRN Thermodyn 2012: 1-10.

[21] Ma HB, Wilson C, Borgmeyer B, Park K, Yu Q, Choi SUS, Tirumala M. (2006). Effect of nanofluid on the heat transport capability in an oscillating heat pipe. Appl. Phys. Lett 88: 14. https://doi.org/10.1063/1.2192971

[22] Deng Y, Li Y, Dai J, Lang M, Huang X. (2011). An efficient way to functionalize graphene sheets with presynthesized polymer via ATNRC chemistry. J. Polym. Sci. Part A Polym. Chem 49(7): 1582-1590. https://doi.org/10.1002/pola.24579

[23] Solangi KH, Kazi SN, Luhur MR, Badarudin A, Amiri A, Sadri R, Zubir MNM, Gharehkhani S, Teng KH. (2015). A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids. Energy 89(February 2016): 1065-1086. https://doi.org/10.1016/j.energy.2015.06.105

[24] Yu W, Xie H. (2012). A review on nanofluids: Preparation, stability mechanisms, and applications. J. Nanomater 2012. https://doi.org/10.1155/2012/435873

[25] Noghrehabadi A, Pourrajab R. (2016). Experimental investigation of forced convective heat transfer enhancement of γ-Al2O3/water nanofluid in a tube. J. Mech. Sci. Technol 30(2): 943-952. https://doi.org/10.1007/s12206-016-0148-z

[26] Srinivasrao G, Rao PV. (2016). Numerical and experimental investigation of packed bed thermal energy storage system with Al2O3 Nanofluid. Int. Res. J. Eng. Technol 3(1): 582-590.

[27] Aghayari R, Maddah H, Zarei M, Dehghani M, Kaskari Mahalle SG. (2014). Heat transfer of nanofluid in a double pipe heat exchanger. Int. Sch. Res. Not 2014: 1-7. https://doi.org/10.1155/2014/736424

[28] Sridhara V, Satapathy LN. (2011). Al2O3 -based nanofluids : A review. pp. 1-16.

[29] Lee S, Choi SUS, Li S, Eastman JA. (1999). Measuring thermal conductivity of fluids containing oxide np. J. Heat Transfe 121(2): 280-289.

[30] Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper np. Appl. Phys. Lett 78(6): 718-720. https://doi.org/10.1063/1.1341218

[31] Jana S, Salehi-Khojin A, Zhong WH. (2007). Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim. Acta 462(1-2): 45-55. https://doi.org/10.1016/j.tca.2007.06.009

[32] Wang XQ, Mujumdar AS. (2007). Heat transfer characteristics of nanofluids: A review. Int. J. Therm. Sci 46(1): 1-19. https://doi.org/10.1016/j.ijthermalsci.2006.06.010

[33] Peyghambarzadeh SM, Hashemabadi SH, Naraki M, Vermahmoudi Y. (2013). Experimental study of overall heat transfer coef fi cient in the application of dilute nano fluids in the car radiator. Int. J. Therm. Sci 52: 8-16. https://doi.org/10.1016/j.applthermaleng.2012.11.013

[34] Zainy M, Huang NM, Vijay Kumar S, Lim HN, Chia CH, Harrison I. (2012). Simple and scalable preparation of reduced graphene oxide-silver nanocomposites via rapid thermal treatment. Mater. Lett 89(January): 180-183. https://doi.org/10.1016/j.matlet.2012.08.101

[35] Kazi SN, Badarudin A, Zubir MNM, Huang NM, Misran M, Sadeghinezhad E, Mehrali M, Syuhada NI. (2015). Investigation on the use of graphene oxide as novel surfactant to stabilize weakly charged graphene nanoplatelets. Nanoscale Res. Lett 10(1): 212. https://doi.org/10.1186/s11671-015-0882-7

[36] Liang J, Huang Y, Zhang L, Wang Y, Ma YF, Guo TY, Chen YS. (2009). Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater 19(14): 2297-2302. https://doi.org/10.1002/adfm.200801776

[37] Shahrul IM, Mahbubul IM, Khaleduzzaman SS, Saidur R, Sabri MFM. (2014). A comparative review on the specific heat of nanofluids for energy perspective. Renew. Sustain. Energy Rev 38: 88-98. https://doi.org/10.1016/j.rser.2014.05.081

[38] Baby TT, Ramaprabhu S. (2011). Synthesis and nanofluid application of silver np decorated graphene. J. Mater. Chem 21(26): 9702. https://doi.org/10.1039/c0jm04106h

[39] Zeinali Heris S, Nasr Esfahany M, Etemad SG. (2007). Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int. J. Heat Fluid Flow 28(2): 203-210.

[40] Lajvardi M, Moghimi-Rad J, Hadi I, Gavili A, Dallali Isfahani T, Zabihi F, Sabbaghzadeh J. (2010). Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect. J. Magn. Magn. Mater 322(21): 3508-3513. https://doi.org/10.1016/j.jmmm.2010.06.054

[41] Baby TT, Ramaprabhu S. (2011). Enhanced convective heat transfer using graphene dispersed nanofluids. Nanoscale Res. Lett 6(1): 289. https://doi.org/10.1186/1556-276X-6-289

[42] Syam Sundar L, Naik MT, Sharma KV, Singh MK, Siva Reddy TC. (2012). Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Exp. Therm. Fluid Sci 37: 65-71. https://doi.org/10.1016/j.expthermflusci.2011.10.004

[43] Ma J, Xu Y, Li W, Zhao J, Zhang S, Basov S. (2013). Experimental investigation into the forced convective heat transfer of aqueous Fe3O4 nanofluids under transition region. J. Np 2013: 1–5. https://doi.org/10.1155/2013/601363

[44] Mohammadian S, Layeghi M, Hemmati M. (2013). Experimental study of forced convective heat transfer from a vertical tube conveying dilute Ag/DI water nanofluids in a cross flow of air. Int. Nano Lett 3(1): 15. https://doi.org/10.1186/2228-5326-3-15

[45] Akhavan-Zanjani H, Saffar-Avval M, Mansourkiaei M, Sharif F, Ahadi M. (2016). Experimental investigation of laminar forced convective heat transfer of Graphene-water nanofluid inside a circular tube. Int. J. Therm. Sci 100: 316-323. https://doi.org/10.1016/j.ijthermalsci.2015.10.003

[46] Das S, Kumar DS, Bhaumik S. (2016). Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface. Appl. Therm. Eng 96: 555-567. https://doi.org/10.1016/j.applthermaleng.2015.11.117

[47] Madhesh D, Parameshwaran R, Kalaiselvam S. (2016). Experimental studies on convective heat transfer and pressure drop characteristics of metal and metal oxide nanofluids under turbulent flow regime. Heat Transf. Eng 37(5): 422-434. https://doi.org/10.1080/01457632.2015.1057448

[48] Megatif L, Ghozatloo A, Arimi A, Shariati-Niasar M. (2015). Investigation of laminar convective heat transfer of a novel TiO2-carbon nanotube hybrid water-based nanofluid. Exp. Heat Transf 6152(November): 1-15. https://doi.org/10.1080/08916152.2014.973974

[49] Dewitt G, McKrell T, Buongiorno J, Hu LW, Park RJ. (2013). Experimental study of critical heat flux with alumina-water nanofluids in downward-facing channels for In-Vessel retention applications. Nucl. Eng. Technol 45(3): 335-346. https://doi.org/10.5516/NET.02.2012.075

[50] Li X, Chen Y, Mo S, Jia L, Shao X. (2014). Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid. Thermochim. Acta 595: 6-10. https://doi.org/10.1016/j.tca.2014.09.006

[51] Yu W, Xie H, Wang X, Wang X. (2011). Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys. Lett. Sect. A Gen. At. Solid State Phys 375(10): 1323-1328. https://doi.org/10.1016/j.physleta.2011.01.040

[52] Guo SZ, Li Y, Jiang JS, Xie HQ. (2010). Nanofluids containing γ-Fe2O3 np and their heat transfer enhancements. Nanoscale Res. Lett 5(7): 1222-1227. https://doi.org/10.1007/s11671-010-9630-1

[53] Philip J, Shima PD, Raj B. (2007). Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures. Appl. Phys. Lett 91(20): 203-205. https://doi.org/10.1063/1.2812699

[54] Hamad MAA, Pop I, Md Ismail AI. (2011). Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate. Nonlinear Anal. Real World Appl 12(3): 1338-1346. https://doi.org/10.1016/j.nonrwa.2010.09.014

[55] Aminossadati SM, Raisi A, Ghasemi B. (2011). Effects of magnetic field on nanofluid forced convection in a partially heated microchannel. Int. J. Non. Linear. Mech 46(10): 1373-1382. https://doi.org/10.1016/j.ijnonlinmec.2011.07.013

[56] Benzema M, Benkahla YK, Labsi N, Brunier E, Ouyahia SE. (2017). Numerical mixed convection heat transfer analysis in a ventilated irregular enclosure crossed by Cu–Water nanofluid. Arab. J. Sci. Eng 42(11): 4575-4586. https://doi.org/10.1007/s13369-017-2563-6

[57] Boutra A, Ragui K, Labsi N, Bennacer R, Benkahla YK. (2016). Natural convection heat transfer of a nanofluid into a cubical enclosure: Lattice boltzmann investigation. Arab. J. Sci. Eng 41(5): 1969-1980. https://doi.org/10.1007/s13369-016-2052-3

[58] Selimefendigil F, Öztop HF, Abu-Hamdeh N. (2016). Mixed convection due to rotating cylinder in an internally heated and flexible walled cavity filled with SiO2–water nanofluids: Effect of nanoparticle shape. Int. Commun. Heat Mass Transf 71: 9-19. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.007

[59] Duangthongsuk W, Wongwises S. (2015). A comparison of the heat transfer performance and pressure drop of nanofluid-cooled heat sinks with different miniature pin fin configurations. Exp. Therm. Fluid Sci 69: 111-118. https://doi.org/10.1016/j.expthermflusci.2015.07.019

[60] Duangthongsuk W, Wongwises S. (2009). Measurement of temperature-dependent thermal conductivity and viscosity of TiO2 -water nanofluids. Exp. Therm. Fluid Sci 33(4): 706-714.

[61] Agarwal DK, Vaidyanathan A, Sunil Kumar S. (2013). Synthesis and characterization of kerosene–alumina nanofluids. Appl. Therm. Eng 60(1-2): 275-284. https://doi.org/10.1016/j.applthermaleng.2013.06.049

[62] Baby TT, Sundara R. (2011). Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J. Phys. Chem. C 115(17): 8527-8533. https://doi.org/10.1021/jp200273g

[63] Huang D, Wu Z, Sunden B. (2016). Effects of hybrid nanofluid mixture in plate heat exchangers. Exp. Therm. Fluid Sci 72: 190-196. https://doi.org/10.1016/j.expthermflusci.2015.11.009

[64] Wang X, Xu X, Choi SUS. (1999). Thermal conductivity of nanoparticle - fluid mixture. J. Thermophys. Heat Transf. 13(4): 474-480. https://doi.org/10.2514/2.6486

[65] Pradhan NR, Duan H, Liang J, Iannacchione GS. (2009). The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Nanotechnology 20(24): 245705.

[66] Murshed SMS, Leong KC, Yang C. (2008). Thermophysical and electrokinetic properties of nanofluids - A critical review. Appl. Therm. Eng 28(17-18): 2109-2125. https://doi.org/10.1016/j.applthermaleng.2008.01.005

[67] Yu J, Huang X, Wu C, Jiang P. (2011). Permittivity, thermal conductivity and thermal stability of poly(vinylidene fluoride)/graphene nanocomposites. IEEE Trans. Dielectr. Electr. Insul 18(2): 478-484. https://doi.org/10.1109/TDEI.2011.5739452

[68] Balandin AA. (2011). Thermal properties of graphene, carbon nanotubes and nanostructured carbon materials. Nat. Mater 10: 569-581. https://doi.org/10.1038/nmat3064

[69] Ahammed N, Asirvatham LG, Wongwises S. (2016). Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications. J. Therm. Anal. Calorim 123(2): 1399-1409. https://doi.org/10.1007/s10973-015-5034-x

[70] Wang M, Jamal R, Wang Y, Yang L, Liu F, Abdiryim T. (2015). Functionalization of graphene oxide and its composite with poly (3,4-ethylenedioxythiophene) as electrode material for supercapacitors. Nanoscale Res. Lett 10(1): 370.

[71] Park SD, Lee SW, Sarah K, Bang IC, Kim JH, Shin HS, Lee DW, Lee DW. (2010). Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux. Appl. Phys. Lett 97(2). https://doi.org/10.1063/1.3459971

[72] Gupta SS. Siva MV, Krishnan S, Sreeprasad TS, Singh PK, Pradeep T, Das SK. (2011). Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J. Appl. Phys 110: 84302. https://doi.org/10.1063/1.3650456

[73] Fan LW, Li JQ, Li DY, Zhang L, Yu ZT, Cen KF. (2015). The effect of concentration on transient pool boiling heat transfer of graphene-based aqueous nanofluids. Int. J. Therm. Sci 91: 83-95. https://doi.org/10.1016/j.ijthermalsci.2015.01.009

[74] Lee YH, Polavarapu L, Gao N, Yuan P, Xu QH. (2012). Enhanced optical properties of graphene oxide-Au nanocrystal composites. Langmuir 28(1): 321-326. https://doi.org/10.1021/la204047a

[75] Mehrali M, Sadeghinezhad E, Latibari ST, Mehrali M, Togun H, Zubir MNM, Kazi SN, Metselaar HSC. (2014). Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids. J. Mater. Sci 49(20): 7156-7171. https://doi.org/10.1007/s10853-014-8424-8

[76] Hu L, Kim HS, Lee J, Peumans P, Cui Y. (2010). Scalable coating and properties of transparent ag nanowire. ACS Nano 4(5): 2955-2963. https://doi.org/10.1021/nn1005232

[77] Gunnasegaran P, Abdullah MZ, Yusoff MZ, Abdullah SF. (2015). Optimization of SiO2 nanoparticle mass concentration and heat input on a loop heat pipe. Case Stud. Therm. Eng 6: 238-250. https://doi.org/10.1016/j.csite.2015.10.004

[78] Gao W. (2015). The chemistry of graphene oxide’, Graphene Oxide Reduct. Recipes, Spectrosc. Appl  pp. 61-95.

[79] Yang P, Li X, Yang H, Wang X, Tang Y, Yuan X. (2013). Numerical investigation on thermal conductivity and thermal rectification in graphene through nitrogen-doping engineering. Appl. Phys. A Mater. Sci. Process 112(3): 759-765. https://doi.org/10.1007/s00339-013-7607-5