Analysis on thermodynamic performance of ancient pagodas considering flow heat transfer properties

Analysis on thermodynamic performance of ancient pagodas considering flow heat transfer properties

Wei Liu Sheliang Wang  Tao Yang  Yuan Zhou 

Xi’an University of Architecture and Technology, Xi’an 710055, China

Corresponding Author Email: 
liuweijyy@163.com
Page: 
1276-1282
|
DOI: 
https://doi.org/10.18280/ijht.360416
Received: 
21 March 2018
| |
Accepted: 
14 July 2018
| | Citation

OPEN ACCESS

Abstract: 

The optimization of cooling and ventilation systems is essential to the protection of ancient pagodas, which boast profound historical, cultural and tourism values. This calls for thorough investigation into the thermodynamic and flow heat transfer properties of the central air-conditioning system (CACS) in the pagoda. In this paper, a thermodynamic model of the cooling tower is established in the principle of differential calculation, and verified through field test. On this basis, the author further discussed the impacts of drifting and reflux effect on the working performance of the cooling tower. The results show that: without considering the drifting effect, there is only a slight error between the measured inlet air enthalpy, inlet air temperature and inlet air relative humidity and the values simulated by the proposed model; in actual operation, the drifting of water vapour away from the cooling tower carries away some heat, leading to reduced temperature and increased relative humidity at the air inlet; the reflux ratio within the cooling tower is positively correlated with the water temperature, dry-bulb temperature and relative humidity at the outlet of the cooling tower, but negatively with the heat exchange amount of the tower, under different atmospheric dry-bulb temperatures, atmospheric relative humidities and gas-water ratios; the reflux of water vapour has a significant impact on the cooling performance of the cooling tower, and the impact is positively correlated to the reflux ratio. The research findings provide theoretical support for engineering applications like heating, cooling and ventilation in ancient pagodas.

Keywords: 

ancient pagodas, thermodynamic performance, heat transfer properties, reflux effect, drifting

1. Introduction
2. Thermodynamic Model and Heat Transfer Features of Cooling Tower
3. Thermodynamic Model Verification and Analysis
4. Conclusions
  References

[1] Jaishi B, Ren WX, Zong ZH, Maskey PN. (2003). Dynamic and seismic performance of old multi-tiered temples in nepal. Engineering Structures 25(14): 1827-1839. http://dx.doi.org/10.1016/j.engstruct.2003.08.006

[2] Gentile C, Saisi A, Cabboi A. (2015). Structural identification of a masonry tower based on operational modal analysis. International Journal of Architectural Heritage 9(2): 98-110. http://dx.doi.org/10.1080/15583058.2014.951792

[3] Gao DF, Li PF, Wang L. (2012). Study on the structural and aseismatical performance of multi-storey ancient Chinese timber structure shangyou tower of palace style. Advanced Materials Research 535-537. http://dx.doi.org/2012-2016.10.4028/www.scientific.net/amr.535-537.2012 

[4] Bassoli E, Forghieri M, Vincenzi L, Bovo M, Mazzotti C. (2017). Structural health monitoring of a historical masonry bell tower using operational modal analysis. Key Engineering Materials 747: 440-447. http://dx.doi.org/10.4028/www.scientific.net/KEM.747.440

[5] Bartoli G., Betti M, Vignoli A. (2016). A numerical study on seismic risk assessment of historic masonry towers: A case study in san gimignano. Bulletin of Earthquake Engineering 14(6): 1475-1518. http://dx.doi.org/10.1007/s10518-016-9892-9 

[6] Ferraioli M, Miccoli L, Abruzzese D. (2018). Dynamic characterisation of a historic bell-tower using a sensitivity-based technique for model tuning. Journal of Civil Structural Health Monitoring 8(3): 1-17. http://dx.doi.org/10.4028/www.scientific.net/kem.628.55 

[7] Ditommaso R, Mucciarelli M, Parolai S, Picozzi M. (2012). Monitoring the structural dynamic response of a masonry tower: comparing classical and time-frequency analyses. Bulletin of Earthquake Engineering 10(4). http://dx.doi.org/1221-1235. 10.1007/s10518-012-9347-x 

[8] Qu TJ, Wang YP, Wang XY. (2013). Experimental study for seismic performance of confined masonry structure. Applied Mechanics & Materials 353-356: 1826-1831. http://dx.doi.org/10.4028/www.scientific.net/amm.353-356.1826 

[9] Zhang Q, Jiao Y, Cao M, Jin L. (2017). Simulation analysis on summer conditions of ancient architecture of tower buildings based on cfd. Energy Procedia 143: 313-319. http://dx.doi.org/10.1016/j.egypro.2017.12.690 

[10] Al-Waked R, Behnia M. (2006). Cfd simulation of wet cooling towers. Applied Thermal Engineering 26(4): 382-395. http://dx.doi.org/10.1016/j.applthermaleng.2005.06.018 

[11] Lin H, Li XH, Cheng PS, Xu BG. (2014). Study on chilled energy storage of air-conditioning system with energy saving. Energy & Buildings 79(4): 41-46. http://dx.doi.org/10.1016/j.enbuild.2014.04.047 

[12] Sayyadi H, Nejatolahi M. (2011). Thermodynamic and thermoeconomic optimization of a cooling tower-assisted ground source heat pump. Geothermics 40(3): 221-232. http://dx.doi.org/10.1016/j.geothermics.2011.06.003 

[13] Papaefthimiou VD, Zannis TC, Rogdakis ED. (2010). Thermodynamic study of wet cooling tower performance. International Journal of Energy Research 30(6): 411-426. http://dx.doi.org/10.1002/er.1158 

[14] Mansour MK, Hassab MA. (2014). Innovative correlation for calculating thermal performance of counterflow wet-cooling tower. Energy 74(5): 855-862. http://dx.doi.org/10.1016/j.energy.2014.07.059 

[15] Chabane F, Sekseff E. (2018). Solar air collectors with doubles glazed by different distances in support of mass flow. Instrumentation, Mesure, Métrologie 17(1): 37-53. http://dx.doi.org/10.3166/I2M.17.37-53

[16] Al-Waked R. (2010). Crosswinds effect on the performance of natural draft wet cooling towers. International Journal of Thermal Sciences 49(1): 218-224. http://dx.doi.org/10.1016/j.ijthermalsci.2009.07.012 

[17] Fisenko SP, Brin AA. (2007). Simulation of a cross-flow cooling tower performance. International Journal of Heat & Mass Transfer 50(15): 3216-3223. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.05.028 

[18] Söylemez MS. (2004). On the optimum performance of forced draft counter flow cooling towers. Energy Conversion & Management 45(15): 2335-2341. http://dx.doi.org/10.1016/j.enconman.2003.11.023 

[19] Kloppers JC, Kröger DG. (2005). The lewis factor and its influence on the performance prediction of wet-cooling towers. International Journal of Thermal Sciences 44(9): 879-884. http://dx.doi.org/10.1016/j.ijthermalsci.2005.03.006 

[20] Kie PL, Theng LB. (2008). Intelligent control of heating, ventilating and air conditioning systems. Lecture Notes in Computer Science 5507: 927-934.

[21] Gao M, Sun FZ, Wang K, Shi YT, Zhao YB. (2008). Experimental research of heat transfer performance on natural draft counter flow wet cooling tower under cross-wind conditions. International Journal of Thermal Sciences 47(7): 935-941. http://dx.doi.org/10.1016/j.ijthermalsci.2007.07.010 

[22] Smrekar J, Oman J, Širok B. (2006). Improving the efficiency of natural draft cooling towers. Energy Conversion & Management 47(9–10): 1086-1100. http://dx.doi.org/10.1016/j.enconman.2005.07.012 

[23] Alavi SR, Rahmati M. (2016). Experimental investigation on thermal performance of natural draft wet cooling towers employing an innovative wind-creator setup. Energy Conversion & Management 122: 504-514. http://dx.doi.org/10.1016/j.enconman.2016.06.016 

[24] Qi X, Liu Z, Li D. (2007). Thermodynamic calculation model of hollow cooling tower. Industrial Water Treatment 27(8): 61-65.

[25] Zhang Q, Wu J, Zhang G, Zhou J, Guo Y, Shen W. (2012). Calculations on performance characteristics of counterflow reversibly used cooling towers. International Journal of Refrigeration 35(2): 424-433. http://doi.org/10.1016/j.ijrefrig.2011.10.016