Experimental study of thermal efficiency of a solar air heater with an irregularity element on absorber plate

Experimental study of thermal efficiency of a solar air heater with an irregularity element on absorber plate

Foued ChabaneNoureddine Moummi Abdelhafid Brima 

Mechanical Department, Faculty of Technology, University of Biskra 07000, Algeria

Mechanical Engineering Laboratory (LGM), Faculty of Technology, University of Biskra 07000, Algeria

Corresponding Author Email: 
fouedmeca@hotmail.fr
Page: 
855-860
|
DOI: 
https://doi.org/10.18280/ijht.360311
Received: 
27 September 2017
| |
Accepted: 
20 August 2018
| | Citation

OPEN ACCESS

Abstract: 

The thermal performance of a solar air heater is presented with addition fins. In this work, we developed an experimental study on the thermal performance of a solar collector air with and without semi-cylindrical baffle. In trying to change the mass flow rates times for both configurations corresponding to tilt angle b = 37 °, it represented the optimum tilt angle of the city of Biskra. The essential parameters are measurements of the outlet, an inlet and an ambient temperature and covering according to the influence of the wind velocity. Experiments on a solar collector designed for this purpose, have determined the thermal efficiency of solar collector with and without semi-cylindrical baffle to different flow intervals to actually follow the evolution of the outlet temperature of the air. The results provide the best thermal efficiency for a solar collector flat plate with semi-cylindrical baffle is increased by 19% that of without baffle.

Keywords: 

semi-cylindrical baffle, thermal efficiency, outlet temperature, solar irradiation, flat plate

1. Introduction
2. Experimental Setup
3. Discussion
4. Conclusions
Nomenclature
  References

[1] Ahmed-Zaïd A, Moulla MS, Hantala JY. Des mons (2001). Improvement to the performance of solar collector air planes: Application to the drying of the yellow onion and herring. Revue des Energies Renouvelables 4: 69–78.

[2] Benyelles F, Benabadjia B, Benyoucef B, Ziani Z. (2007). Comparision between a Silica airgel collector and other flat collector. 13ièmes Journées Internationales de Thermique, Albi, France 28-30.

[3] Zerrouki A, Tedjiza B, Said N. (2002). Modeling thermal losses in a two-pass air solar collector. Rev. Energ. Ren 5: 49-58.

[4] Aoues K, Moummi N, Zellouf M, Moummi A, Labed A, Achouri E, Benchabane A. (2009). Improvement of the thermal performance of a planar air solar collector-experimental study in the Biskra Region. Revue des Energies Renouvelables 12(2): 237-248.

[5] Labed A, Moummi N, Aoues K, Zellouf M, Moummi A. (2009). Theoretical and experimental study of a flat air solar collector equipped with a new artificial roughness form. Revue des Energies Renouvelables 12(4): 551-561.

[6] Slama RB. (2007). The air solar collectors: Comparative study, introduction of baffles to favor the heat transfer. Solar Energy 81:139-149. 

[7] Bahria S, Amirat M. (2013). Influence of the addition of longitudinal baffles on the performance of a solar collector. Revue des Energies Renouvelables 16(1): 51-63.

[8] El-khawajah MF, Aldabbagh LBY, Egelioglu F. (2011). The effect of using transverse fins on a double pass flow solar air heater using wire mesh as an absorber. Solar Energy 85: 1479-1487. 

[9] Yeh HM. (2012). Upward-type flat-plate solar air heaters attached with fins and operated by an internal recycling for improved performance. Journal of the Taiwan Institute of Chemical Engineers 43: 235-240.

[10] Chabane F, Moummi N, Benramache S. (2014). Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater. Journal of Advanced Research 5: 183-192.

[11] Chabane F, Moummi N, Benramache S, and Tolba AS. (2012). Experimental study of heat transfer and an effect the tilt angle with variation of the mass flow rates on the solar air heater. Int J Sci Eng Invest 1(9): 61-5.

[12] Chabane F, Moummi N, and Benramache S. (2012). Experimental performance of solar air heater with internal fins inferior an absorber plate: In the region of Biskra. Int J Energy Technol 4(33): 1-6.

[13] Chabane F, Moumm N, Brima A, Benramache S. (2013). Thermal efficiency analysis of a single-flow solar air heater with different mass flow rates in a smooth plate. Frontiers in Heat and Mass Transfer 4(1). http://dx.doi.org/10.5098/hmt.v4.1.3006

[14] Chabane F, Moumm N, Benramache S, Bensahal D, Belahssen O. (2013). Collector efficiency by single pass of solar air heaters with and without using fins. Engineering Journal 17(3): 43-55.

[15] Chabane F, Moumm N, Benramache S. (2012). Effect of the tilt angle of natural convection in a solar collector with internal longitudinal fins. Int J Sci Eng Invest 1(7): 13-7.

[16] Chabane F, Moumm N, Benramache S. (2013). Experimental analysis on thermal performance of a solar air collector with longitudinal fins in a region of Biskra, Algeria. Journal of Power Technologies 93(1): 52-58.

[17] Chabane F, Moumm N, Benramache S, Belahssan O, Bensahal D. (2013). Nusselt number correlation of SAH. Journal of Power Technologies 93(2): 100-110.

[18] Chabane F, Moumm N. (2014). Heat transfer and energy analysis of a solar air collector with smooth plate. Eur. Phys. J. Appl. Phys 66: 10901.

[19] Chabane F, Hatraf N, Moumm N. (2014). Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater. Front Energy 8(2): 160–172.

[20] Chabane F, Moummi N, Benramache S, Bensahal D, Belahssen O. (2013). Collector efficiency by single pass of solar air heaters with and without using fins. Engineering Journal 7: 44-53.

[21] Chabane F, Moummi N, Benramache S. (2014). Heat transfer and energy analysis of a solar air collector with smooth plate. The European Physical Journal Applied Physics 66(1): 10901.

[22] Chabane F, Hatraf N, Moummi N. (2014). Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater. Frontiers in Energy 8(2): 160-172.

[23] Chabane F, Moummi N, Bensahal D, Brima A. (2014). Heat transfer coefficient and thermal losses of solar collector and Nusselt number correlation for rectangular solar air heater duct with longitudinal fins hold under the absorber plate. Applied Solar Energy 50(1): 19-26.

[24] Chabane F, Moummi N, Benramache S. (2014). Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater. Journal of Advanced Research 5(2): 183–192.

[25] Chabane F, Moummi N, Brima A, Benramache S. (2013). Thermal efficiency analysis of a single-flow solar air heater with different mass flow rates in a smooth plate. Frontiers in Heat and Mass Transfer 4(1).

[26] Chabane F, Moummi N, Benramache S, Bensahal D, Belahssen O. (2013). Effect of artificial roughness on heat transfer in a solar air heater. Journal of Science and Engineering 1(2): 85-93.

[27] Chabane F, Moummi N, Benramache S. (2013). Experimental analysis on thermal performance of a solar air collector with longitudinal fins in a region of Biskra, Algeria. Journal of Power Technologies 93(1): 52-58.

[28] Chabane F, Moummi N, Benramache S, Lemmadi FZ. (2013). Thermal performance optimization of a flat plate solar air heater. International Journal of Energy & Technology 5(8): 1-6.

[29] Chabane F, Moummi N, Benramache S. (2012). Experimental study on heat transfer for a solar air heater and contribution the fins to improve the thermal efficiency. International Journal of Advanced Renewable Energy Researches 1: 9.

[30] Chabane F, Moummi N, Benramache S. (2012). Experimental performance of solar air heater with internal fins inferior an absorber plate: in the region of Biskra. International Journal of Energy & Technology 4(33): 1-6.

[31] Chabane F, Moummi N, Benramache S. (2012). Effect of the tilt angle of natural convection in a solar collector with internal longitudinal fins. International Journal of Science and Engineering 1: 13-17.

[32] Hammond L, Bai L, Sheehan M, Walker C. (2018). Experimental analysis and diffusion modelling of solar drying of macroalgae - oedogonium sp. Chemical Engineering Transactions 65: 427-432. https://doi.org/10.3303/CET1865072

[33] Sevault A, Soibam J, Haugen NEL, Skreiberg Ø. (2018). Investigation of an innovative latent heat storage concept in a stovepipe. Chemical Engineering Transactions 65: 25-30. https://doi.org/10.3303/CET1865005

[34] Mcadams WH. (1961). Heat transmission. 2e édition.

[35] Klein SA, Beckman WA. (1979). A general desing method for colsed-loop solar energy systems. Solar Energy 22.