Computational fluid dynamics comparison of separation performance analysis of uniform and non-uniform counter-flow Ranque-Hilsch Vortex Tubes (RHVTs)

Computational fluid dynamics comparison of separation performance analysis of uniform and non-uniform counter-flow Ranque-Hilsch Vortex Tubes (RHVTs)

Adib BazgirNader Nabhani 

B.sc of Chemical Engineering, Petroleum University of Technology, Ahwaz 6118958688, Iran

Associate professor of Mechanical Engineering, Petroleum University of Technology, Ahwaz, Iran

Corresponding Author Email: 
nabhani@put.ac.ir
Page: 
643-656
|
DOI: 
https://doi.org/10.18280/ijht.360229
Received: 
17 September 2017
| |
Accepted: 
30 March 2018
| | Citation

OPEN ACCESS

Abstract: 

In the present work, uniform and non-uniform cross section vortex tubes have been optimized utilizing straight, convergent (φ) and divergent (θ) hot-tube axial angles. A computational fluid dynamic (CFD) techniques with RNG k-ԑ turbulence model was employed to investigate the influence of divergent (θ) and convergent (φ) angles on the flow behavior within the vortex tube. The isentropic efficiency (ηis) and coefficient of performance (COP) of machine was studied under five different divergent angles (θ), namely 1, 2, 3, 4 and 6 degree, two different convergent angles (φ) named 1 and 2 degree adjusted to the hot-tube. In this study, some factors such as axial angle of inlet nozzles, inlet pressure, mass flow rates and number of inlet nozzles as well as the effect of different kinds of inlet gas have been analyzed in detailed in order to optimize the cooling efficiency of vortex tube (straight). The results show that utilizing the divergent hot-tubes increases the isentropic efficiency (ηis) and coefficient of performance (COP) of device for most values of inlet pressures and helps to become more efficient than the other shape of vortex tubes (straight and convergent). Also, helium has shown produces the largest energy separation as a refrigerant.

Keywords: 

divergent vortex tube, convergent vortex tube, Isentropic efficiency is), coefficient of performance (COP), CFD

1. Introduction
2. Governing Equations and Turbulence Model
3. OPERATIVE PARAMETERS
4. Boundary Conditions
5. Computational Domain and Model Solver Conditions
6. Results and Discussion
7. Conclusion
Acknowledgement
Nomenclature
  References

[1] Bazgir A. (2017). Ranque-Hilsch vortex tube: A numerical study. 2nd International Conference Of Science and engineering In the Technology Era. Brussels (Belgium). 

[2] Bazgir A, Heydari A. (2018). Energy conversion (efficiency) of straight counter-flow Ranque-Hilsch Vortex Tube (RHVT) by using optimized turbulence model. Proceedings of ACN International Conference. Istanbul (Turkey).

[3] Bazgir A. (2017). Investigation of the effects of number of nozzle intakes on the performance of vortex tube refrigerators base on CFD. 6th International Conference on Research in Engineering, Science and Technology. London (England).

[4] Bazgir A. (2017). Numerical investigation of flow pattern inside different counter-flow Ranque-Hilsch vortex tube refrigerators. 3rd International Conference on Innovation In science and Technology, Berlin, Germany.

[5] Pouraria H, Zangooee M. (2012). Numerical investigation of vortex tube refrigerator with a divergent hot tube. Energy Procedia 14: 1554-9. https://doi.org/10.1016/j.egypro.2011.12.1132

[6] Park WG., Pouraria H. (2014). Numerical investigation on cooling performance of Ranque-Hilsch vortex tube. Thermal Science 18(4): 1173-89. https://doi.org/10.2298/TSCI120610052P

[7] Riu KJ, Kim JS, Choi IS. (2004). Experimental investigation on dust separation characteristics of a vortex tube. JSME International Journal Series B Fluids and Thermal Engineering 47(1): 29-36. https://doi.org/10.1299/jsmeb.47.29

[8] Eiamsa-ard S, Promvonge P. (2008). Review of Ranque–Hilsch effects in vortex tubes. Renewable and Sustainable Energy Reviews 12(7): 1822-42. https://doi.org/10.1016/j.rser.2007.03.006

[9] Saidi M, Valipour M. (2003). Experimental modeling of vortex tube refrigerator. Applied Thermal Engineering 23(15): 1971-80. https://doi.org/10.1016/S1359-4311(03)00146-7

[10] Valipour MS, Niazi N. (2011). Experimental modeling of a curved Ranque–Hilsch vortex tube refrigerator. International Journal of Refrigeration 34(4): 1109-16. https://doi.org/10.1016/j.ijrefrig.2011.02.013

[11] Dincer K, Baskaya S, Uysal B. (2008). Experimental investigation of the effects of length to diameter ratio and nozzle number on the performance of counter flow Ranque–Hilsch vortex tubes. Heat and Mass Transfer 44(3): 367-73. https://doi.org/10.1007/s00231-007-0241-z

[12] Dincer K, Başkaya Ş, Kirmaci V, Usta H, Uysal B. (2006). Investigation of performance of a vortex tube with air, oxygen, carbon dioxide and nitrogen as working fluids. Eng Mach 47(560): 36-40. 

[13] Han X, Li N, Wu K, Wang Z, Tang L, Chen G, et al. (2013). The influence of working gas characteristics on energy separation of vortex tube. Applied Thermal Engineering 61(2): 171-7. https://doi.org/10.1016/j.applthermaleng.2013.07.027

[14] Pourmahmoud N, Rafiee S, Rahimi M, Hassanzadeh A. (2013). Numerical energy separation analysis on the commercial Ranque-Hilsch vortex tube on basis of application of different gases. Scientia Iranica Transaction B, Mechanical Engineering 20(5): 1528. 

[15] Thakare HR, Parekh A. (2015). Computational analysis of energy separation in counter—flow vortex tube. Energy 85: 62-77. https://doi.org/10.1016/j.energy.2015.03.058

[16] Eckert E, Hartnett J. (1955). Experimental study of the velocity and temperature distribution in a high velocity vortex type flow. Technical Report No. 6. Minnesota. Univ., Minneapolis. Heat Transfer Lab. 

[17] Vennos S. (1968). An experimental investigation of the gaseous vortex: PhD thesis. Rensselaer Polytechnic Institute. https://doi.org/10.1016/j.rser.2007.03.006

[18] Xue Y, Arjomandi M, Kelso R. (2013). The working principle of a vortex tube. International Journal of Refrigeration 36(6): 1730-40. https://doi.org/10.1016/j.ijrefrig.2013.04.016

[19] Fröhlingsdorf W, Unger H. (1999). Numerical investigations of the compressible flow and the energy separation in the Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer 42(3): 415-22. https://doi.org/10.1016/S0017-9310(98)00191-4

[20] Aljuwayhel N, Nellis G, Klein S. (2005). Parametric and internal study of the vortex tube using a CFD model. International journal of refrigeration 28(3): 442-50. https://doi.org/10.1016/j.ijrefrig.2004.04.004

[21] Behera U, Paul P, Kasthurirengan S, Karunanithi R, Ram S, Dinesh K, et al. (2005). CFD analysis and experimental investigations towards optimizing the parameters of Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer 48(10): 1961-73. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.046

[22] Behera U, Paul P, Dinesh K, Jacob S. (2008). Numerical investigations on flow behaviour and energy separation in Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer 51(25): 6077-89. https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.029

[23] Eiamsa-ard S, Promvonge P. (2007). Numerical investigation of the thermal separation in a Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer 50(5): 821-32. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.018

[24] Eiamsa-ard S, Promvonge P. (2008). Numerical simulation of flow field and temperature separation in a vortex tube. International Communications in Heat and Mass Transfer 35(8): 937-47. https://doi.org/10.1016/j.icheatmasstransfer.2008.04.010

[25] Kazantseva O, Piralishvili SA, Fuzeeva A. (2005). Numerical simulation of swirling flows in vortex tubes. High Temperature 43(4): 608-13. 

[26] Farouk T, Farouk B. (2007). Large eddy simulations of the flow field and temperature separation in the Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer 50(23): 4724-35. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.048

[27] Skye H, Nellis G, Klein S. (2006). Comparison of CFD analysis to empirical data in a commercial vortex tube. International Journal of Refrigeration 29(1): 71-80. https://doi.org/10.1016/j.ijrefrig.2005.05.004

[28] Rafiee SE, Sadeghiazad MBM. (2016). Three-dimensional computational prediction of vortex separation phenomenon inside the Ranque-Hilsch vortex tube. Aviation 20(1): 21-31. https://doi.org/10.3846/16487788.2016.1139814

[29] Rafiee S, Sadeghiazad M. (2017). Experimental and 3D CFD investigation on heat transfer and energy separation inside a counter flow vortex tube using different shapes of hot control valves. Applied Thermal Engineering 110: 648-64. https://doi.org/10.1016/j.applthermaleng.2016.08.166

[30] Liu X, Liu Z. (2014). Investigation of the energy separation effect and flow mechanism inside a vortex tube. Applied Thermal Engineering 67(1): 494-506. https://doi.org/10.1016/j.applthermaleng.2014.03.071

[31] User’s Guide F. 6.3 Documentation. (2006). Fluent Inc, Lebanon, NH. 

[32] Sarkar S, Balakrishnan L. (1990). Application of a Reynolds stress turbulence model to the compressible shear layer. 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. https://doi.org/10.2514/6.1990-1465

[33] Fluent F. 6.3 user’s guide. (2006). Fluent Inc.