Enhanced of thermoelectric properties and effects of Sb doping on the electrical properties of Tl10-xSbxTe6 nano-particles

Enhanced of thermoelectric properties and effects of Sb doping on the electrical properties of Tl10-xSbxTe6 nano-particles

Waqas M. KhanWiqar H. Shah Sabir Khan Sufaid Shah Waqar A. Syed Akif Safeen Kashif Safeen 

Department of Physics, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad 46000, Pakistan

Department of Physics, University of Poonch, Rawalakot, AJK 12350, Pakistan

Department of Physics, Abdul Wali Khan University, Mardan 23200, Pakistan

Corresponding Author Email: 
6 October 2017
23 April 2018
30 June 2018
| Citation



We have prepared the thallium antimony telluride with different doping concentration of Sb, Tl10-xSbxTe6 (x = 1, 1.25, 1.50, 1.75, 2) using solid state reaction techniques. Furthermore, Nano-particles were prepared from the ingot of the respective compound by ball milling techniques. X-rays diffraction analysis confirmed the phase purity of the compound, as no extra peaks were observed. The miller indices and lattice constant has been determined from the XRD data. Energy dispersive x-rays spectroscopy result confirmed the stoichiometric elemental composition of Tl10-xSbxTe6 compound. With increasing antimony (Sb) content the Seebeck coefficient (S) was increased, due to the affected electron hole ratio in the system. The contrary behavior of Seebeck co-efficient and electrical conductivity give rise to enhancement in power factor. Our study allows envisaging the application of Tl10-xSbxTe6 as one of the suitable materials for thermoelectric generator.


Sb-doped tellurium telluride nano-materials, electron holes competition, seebeck co-efficient, electrical conductivity, power factor

1. Introduction
2. Experimental Section
3. Result and Discussion
4. Power Factor
5. Conclusion

[1] Rowe DM. (2006). Thermoelectrics Handbook: Macro to Nano, CRC Press. Taylor & Francis Group, Boca Raton, FL, USA.

[2] Sharp JW, Sales BC, Mandrus DG, Chakoumakos BC. (1999). Thermoelectric properties of Tl2SnTe5 and Tl2GeTe5. Appl. Phys. Lett. 74: 3794–3796. https://doi.org/10.1063/1.124182

[3] Kurosaki K, Kosuga A, Muta H, Uno M, Yamanaka S. (2005). A high-performance thermoelectric bulk material with extremely low thermal conductivity. Appl. Phys. Lett. 87: 061919/13. https://doi.org/10.1063/1.2009828

[4] Sales BC, Chakoumakos BC, Mandrus D. (2000). Thermoelectric properties of thallium filled skutterudites. Phys. Rev. B 61: 2475–2481. https://link.aps.org/doi/10.1103/PhysRevB.61.247

[5] Harnwunggmoung A, Kurosaki K, Muta H, Yamanaka S. (2010). High-temperature thermoelectric properties of thallium-filled Skutterudites. Appl. Phys. Lett. 96. https://aip.scitation.org/doi/abs/10.1063/1.3430739

[6] Yamanaka S, Kosuga A, Kurosaki K. (2003). Thermoelectric properties of Tl9BiTe6. J. Alloys Comp. 352: 275–278. http://dx.doi.org/10.1016/S0925-8388(02)01114-3

[7] Guo Q, Chan M, Kuropatwa BA, Kleinke H. (2013). Enhanced thermoelectric properties of variants of Tl9SbTe6 and Tl9BiTe6 Chem. Mater. 25: 4097–4104. https://doi.org/10.1021/cm402593f

[8] Bryan A, Abdeljalil, Kleinke H. (2011). Phase range and physical properties of the thallium tin tellurides Tl10–xSnxTe6 (x ≤ 2.2). Chem. Mater 6768–6772. https://doi.org/10.1016/j.jallcom.2011.03.182

[9] Guo Q, Assoud A, Kleinke H. (2014). Improved bulk materials with thermoelectric figure-of merit > 1: Tl10–xSnxTe6 and Tl10–xPbxTe6. Adv. Energy Mater. 4: 1400348/1-8. https://doi.org/10.1002/aenm.201400348

[10] Wölfing B, Kloc C, Teubner J, Bucher E. (2001). High performance thermoelectric Tl9BiTe6 withan extremely low thermal conductivity. Phys. Rev. Lett. 86: 4350–4353. https://link.aps.org/doi/10.1103/PhysRevLett.86.4350

[11] Kosuga A, Kurosaki K, Muta H, Yamanaka S. (2006). Thermoelectric properties of Tl–X–TeTl–X–Te (X=GeX=Ge, Sn, and Pb) compounds with low lattice thermal conductivity. J. Appl. Phys. 99: 063705/1-4. https://doi.org/10.1063/1.2885113

[12] Sankar CR, Bangarigadu-Sanasy S, Assoud A, Kleinke H. (2010). Syntheses, crystal structures and thermoelectric properties of two new thallium tellurides: Tl4ZrTe4 and Tl4HfTe4. J. Mater. Chem. 20: 7485–7490. https//doi.org/ 10.1039/c0jm01363c

[13] Sankar CR, Guch M, Assoud A, Kleinke H. (2011). Structural, thermal, and physical properties of the thallium zirconium telluride Tl2ZrTe3. Chem. Mater. 23: 3886–3891. https:// doi.org/10.1021/cm200994t

[14] Bangarigadu-Sanasy S, Sankar CR, Assoud A, Kleinke H. (2011). Crystal structures and thermoelectric properties of the series Tl10–xLaxTe6 with 0.2 ≤ x ≤ 1.15. Dalton Trans. 40: 862–867. https:// doi:10.1039/C0DT01151G

[15] Kosuga A, Kurosaki K, Muta H, Yamanaka S. (2006). Thermoelectric properties of Tl–X–TeTl–X–Te (X=GeX=Ge, Sn, and Pb) compounds with low lattice thermal conductivity. J. Appl. Phys. 99: 063705. https://doi.org/10.1063/1.2181427

[16] Bangarigadu-Sanasy S, Sankar CR, Schlender P, Kleinke H. (2013). Thermoelectric properties of Tl10–xLnxTe6, with Ln = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er, and 0.25 ≤ x ≤ 1.32. J. Alloys Comp. 549(2013): 126–134. http://dx.doi.org/10.1016/j.jallcom.2012.09.023

[17] Najafi-Ashtiani, Bahari A, Hoseinzadeh S. (2018). “Study of structural, optical and electrical properties of WO3-Ag nanocomposite prepared by physical vapor deposition. Applied Physic A 124: 24. http://dx.doi.org/10.1007/s00339-017-1412-5 

[18] Hosseinzadeh, Bahari A. (2017). n-type WO3 semiconductor as a cathode electrochromic material for ECD device. Journal of Materials Science: Materials in Electronics 28: 14446–14452. https://doi.org/10.1007/s11664-018-6199-4

[19] Hoseinzadeh, Ramezani AH. (2018). The effect of nitrogen structure, morphology and electrical resistance of tantalum by Ion implantation method. Journal of Inorganic and Organometallic Polymers and Materials 1443-1574. https://doi.org/10.1007/s10904-017-0769-4

[20] Hosseinzadeh, Bahari A. (2017). The injection of Ag nanoparticles on surface of WO3 thin film: enhanced electrochromic coloration efficiency and switching Response. Journal of Materials Science: Materials in Electronics 28: 14855–14863. https://doi.org/10.1007/s10854-017-7357-9

[21] Monshi A, Reza Monshi M. (2012). World Journal of Nano Science and Engineering 2: 154-160. https://doi:10.4236/wjnse.2012.23020

[22] Snyder GJ, Toberer ES. (2008). Complex thermoelectric materials. Nat. Mater. 7: 105–114. https://doi.org/10.1038/nmat2090