Effects of the dimple geometry on the isothermal performance of a hydrodynamic textured tilting-pad thrust bearing

Effects of the dimple geometry on the isothermal performance of a hydrodynamic textured tilting-pad thrust bearing

Mostefa KouiderSouchet Dominique Zebbar Djallel Youcefi Abdelkader 

Université des Sciences et de la Technologies d’Oran Mohamed Boudiaf, USTO-MB, BP 1505 El M’naouer, 31000 Oran, Algérie

Institut Pprime, CNRS-Université de Poitiers – ENSMA, UPR 3346, Département de Génie Mécanique et Systèmes Complexes, F86962 FUTUROSCOPE Chassenuile, France

Institut des Sciences et Technologies, Centre Universitaire de Tissemsilt El-Wancharissi, 38000, Algérie

Corresponding Author Email: 
kouider.mostefa@univ-usto.dz
Page: 
463-472
|
DOI: 
https://doi.org/10.18280/ijht.360211
Received: 
31 October 2017
|
Accepted: 
6 March 2018
|
Published: 
30 June 2018
| Citation

OPEN ACCESS

Abstract: 

This paper is devoted to the analysis of effects of the dimple geometry on the hydrodynamic characteristics of a tilting pad thrust bearing. In a first step a discretization of Reynolds equation has been carried out by the finite difference method. It is followed by the development and validation of a hydrodynamic model used later for the examination of the influence of different surface dimples (radial, circumferential, rectangular…) on the hydrodynamic characteristics such as maximum pressure, friction torque and power loss. This study allowed highlighting that a suitable arrangement of the dimple contact surface area and also the depth of the dimple can contribute significantly to the improvement of the hydrodynamic characteristics of the tilting-pad thrust bearing.

Keywords: 

dimple geometry, hydrodynamic lubrication, pressure distribution, tilting-pad thrust bearings

1. Introduction
2. Mathematical Formulation of the Problem
3. Model Validation
4. Textures Characteristics
5. Results and Discussion
6. Conclusions
Acknowledgement
Nomenclature
  References

[1] Wasilczuk M. (2015). Friction and lubrication of large tilting-pad thrust bearings. Lubricants 3(2): 164-180. http://dx.doi.org/10.3390/lubricants3020164 

[2] Henry Y. (2013). Experimental analysis of the effect of pads texturing on fixed geometry hydrodynamic thrust bearings behavior. Ph.D. Dissertation. University of Poitiers, France. 

[3] Gherca A. (2013). Modélisation de la lubrification des surfaces texturées - Application à la butée en régime hydrodynamique. Ph.D. Dissertation. University of Poitiers, France.

[4] Huebner KH. (1974). A three dimensional analysis of sector thrust bearing. ASLE Trans. 17(1): 62-73. http://dx.doi.org/10.1080/05698197408981439

[5] Frêne J. (1978). Tapered land thrust bearing operating in both laminar and turbulent regimes. ASLE Tran. 21(3): 243-249. http://dx.doi.org/10.1080/05698197808982881

[6] Kim KW, Tanaka M, Hori Y. (1983). A three-dimensional analysis of thermohydrodynamic performance of sector-shaped, tilting-pad thrust bearings. Trans ASME, Journal of Lubrication Technology 105(3): 406-413. http://dx.doi.org/10.1115/1.3254625 

[7] Kaddouri M. (1986). Détermination des caractéristiques des butées hydrodynamiques: Influence des phénomènes thermiques. Ph.D. Dissertation. Université de Poitiers, France.

[8] Kaddouri M, Souchet D, Frêne J. (1988). Analyse des effets thermiques dans une butée à patins oscillants. Rev. Roum. Sci. Tech. Méc. Appl. 33(5): 455-473.

[9] Markin D, Mc. Carthy DMC, Glavatskih SB. (2003). A FEM approach to simulation of tilting-pad thrust bearing assemblies. Tribology International 36(11): 807-814. http://dx.doi.org/10.1016/S0301-679X(03)00097-5 

[10] Bouyahia F, Hajjam M, Khlifi ME, Souchet D. (2006). Three-dimensional non-Newtonian lubricants flows in sector-shaped, tilting-pads thrust bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 220(3): 75-84. http://dx.doi.org/ 10.1243/13506501JET92

Marian VG, Kilian M, Scholz W. (2007). Theoretical and experimental analysis of a partially textured thrust bearing with square dimples. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 221(7): 771-778. http://dx.doi.org/10.1243/13506501JET292

[11] Dobrica M, Fillon M, Pascovici M, Cicone T. (2010). Optimizing surface texture for hydrodynamic lubricated contacts using a mass-conserving numerical approach. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 224(8): 737-750. http://dx.doi.org/10.1243/13506501JET673

[12] Papadopoulos CI, Efstathiou EE, Nikolakopoulos P. G., Kaiktsis L. (2011). Geometry optimization of textured three-dimensional micro-thrust bearings. J Tribol 133(4): 041702. http://dx.doi.org/10.1115/1.4004990

[13] Charitopoulos A, Fouflias D, Papadopoulos CI, Kaiktsis L, Fillon M. (2014). Thermohydrodynamic analysis of a textured sector-pad thrust bearing: effects on mechanical deformations. Mechanics & Industry 15(5): 403-411. http://dx.doi.org/10.1051/meca/2014048 

[14] Sharma Satish C, Yadav Saurabh K. (2014). Performance analysis of a fully textured hybrid circular thrust pad bearing system operating with non-newtonian lubricant. Tribology International 77: 50-64. http://dx.doi.org/10.1016/j.triboint.2014.04.013

[15] Fillon M, Wodtke M, Wasilczuk M. (2015). Effect of presence of lifting pocket on the THD performance of a large tilting-pad thrust bearing. Friction 3(4): 266-274. http://dx.doi.org/10.1007/s40544-015-0092-4

[16] Henry Y, Bouyer J, Fillon M. (2015). An experimental analysis of the hydrodynamic contribution of textured thrust bearings during steady state operation - comparison with the untextured parallel surface configuration. Journal of Engineering Tribology, Part J. 229(4): 362-375. https://doi.org/10.1177/1350650114537484 

[17] Bian G. (2017). Optimal surface texture design of journal bearing with axial grooves. International Journal of Heat and Technology 35(2): 267-272. http://dx.doi.org/10.18280/ijht.350206 

[18] Gherca A, Fatu A, Hajjam M, Maspeyrot P. (2016). Influence of surface texturing on the hydrodynamic performance of a thrust bearing operating in steady-state and transient lubrication regime. Tribology International 102: 305-318. http://dx.doi.org/10.1016/j.triboint.2016.05.041

[19] Souchet D. (1991). Comportement Thermohydrodynamique des Butées A Patins Oscillants en Régime Laminaire et Turbulent, Ph.D. Dissertation. University of Poitiers, France.

[20] Bouyahia F. (2004). Analyse thermohydrodynamique du comportement des contacts lubrifiés par des fluides non Newtoniens – application aux Butées A Patins Oscillants. Ph.D. Dissertation. University of Poitiers, France.