Variational approach to MHD stagnation flow of nanofluid towards permeable stretching sheet

Variational approach to MHD stagnation flow of nanofluid towards permeable stretching sheet

Muthukumaran ChandrasekarMalayampalayam S. Kasiviswanathan 

Department of Mathematics, Anna University, Chennai, Tamilnadu 600025, India

Corresponding Author Email: 
mchandru@annauniv.edu
Page: 
411-421
|
DOI: 
https://doi.org/10.18280/ijht.360205
Received: 
7 January 2017
| |
Accepted: 
2 February 2018
| | Citation

OPEN ACCESS

Abstract: 

Governing Principle of Dissipative Processes proposed by Gyarmati for non-equilibrium thermodynamics has been employed to obtain the variational solution of steady, laminar, magnetohydrodynamic stagnation flow of a nanofluid over a non-isothermal stretching sheet with Brownian motion and thermophoresis effects when the flow is controlled by suction/injection. The velocity, temperature and concentration fields inside their boundary layers are approximated by polynomial functions which are satisfied by the boundary conditions. The variational principle is formulated, and Euler-Lagrange equations of the principle are reduced to simple polynomial equations in terms of momentum, thermal and concentration boundary layer thicknesses. The temperature, concentration profiles, skin friction, heat and mass transfer effects are analyzed for various values of velocity ratio parameter e, suction/injection parameter H, magnetic parameter x, Prandtl number Pr, wall temperature parameter n, Lewis number Le, Brownian motion parameter Nb and thermophoresis parameter Nt. The obtained results are compared with numerical solutions, and the order of accuracy is remarkable.

Keywords: 

Gyarmati's variational principle, nanofluid, stagnation flow, stretching sheet, suction / injection.

1. Introduction
2. The Governing Boundary Layer Equations of The System
3. Variational Formulation
4. Method of Solution
5. Results and Discussion
6. Conclusions
Nomenclature
  References

[1] Hiemenz K. (1911). Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dingl. Polytech. J. 326: 321-410.

[2] Sakiadis BC. (1961). Boundary-layer behavior on continuous solid surfaces-II. The boundary layer on a continuous flat surface. American Inst. Chemical Eng. J. 7: 221-225. https://doi.org/10.1002/aic.690070211

[3] Crane LJ. (1970). Flow Past a Stretching Plate, Z. Angew. Math. Phys. 21: 645-647. https://doi.org/10.1007/BF01587695

[4] Bhattacharya DK. (1982). Application of Gyarmati's variational principle to laminar stagnation flow problem. Wärme-und Stoffübertragung 17: 27-30. https://doi.org/10.1007/BF01686962

[5] Ariel PD. (1994). Hiemenz flow in hydrodynamics, Acta Mechanica 103: 31-43. https://doi.org/10.1007/BF01180216

[6] Antony Raj S. (1987). A complete analytical solution to laminar heat transfer in axisymmetric stagnation point flow. Int. J. Heat and Mass Transfer 30: 2441-2444. https://doi.org/10.1016/0017-9310(87)90234-1

[7] Mahapatra TR, Gupta AS. (2002). Heat transfer in stagnation-point flow towards a stretching sheet. Heat and Mass Transfer 38: 517-521. https://doi.org/10.1007/s002310100215

[8] Ishak A, Jafar K, Nazar R, Pop I. (2009). MHD stagnation point flow towards a stretching sheet. Physica A 388: 3377-3383.

https://doi.org/10.1016/j.physa.2009.05.026

[9] Choi SUS. (1995). Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of non-Newtonian flows, edited by D.A. Siginer, H.P. Wang. ASME FED 231/ MD 66: 99-105. 

[10] Buongiorno J. (2006). Convective transport in Nanofluids. ASME J. Heat Transfer 128: 240-250. https://doi.org/10.1115/1.2150834

[11] Sharma PR, Singh G, Chamkha AJ. (2011). Unsteady heat transfer in steady stagnation point flow along stretching sheet in the presence of free stream. Int. J. Heat and Tech 29: 39-44.

[12] Bachok N, Ishak A, Pop I. (2013). Boundary layer stagnation-point flow toward a stretching/shrinking sheet in a nanofluid. ASME J. Heat Transfer 135: 1-5. https://doi.org/10.1115/1.4023303

[13] Ibrahim W, Shankar B, Nandeppanavar MM. (2013). MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet. Int. J. Heat and Mass Transfer 56: 1-9. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.034

[14] Ibrahim W, Rizwan UH. (2015). Magnetohydrodynamic (MHD) stagnation point flow of nanofluid past a stretching sheet with convective boundary condition. J. Braz. Soc. Mech. Sci. Eng. 338: 1155-1164. https://doi.org/ 10.1007/s40430-015-0347-z

[15] Hamad MAA, Ferdows M. (2012). Similarity solution of boundary layer stagnation-point flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: A Lie group analysis. Commun. Nonlinear Sci. Numer. Simulat. 17: 132-140. 

https://doi.org/10.1016/j.cnsns.2011.02.024

[16] Reddy MG. (2014). Influence of thermal radiation on natural convection boundary layer flow of a nanofluid past a vertical plate with uniform heat flux. Int. J. Heat and Tech. 32: 1-7.

[17] Gyarmati I. (1969). On the governing principle of dissipative processes and its extension to non-linear problems. Ann. Phy. 23: 353-378. https://doi.org/10.1002/andp.19694780707

[18] Gyarmati I. (1970). Non Equilibrium Thermodynamics: Field Theory and Variational Principles. Springer-Verlag, Berlin, Germany.

[19] Onsager L. (1931). Reciprocal relations in irreversible processes-I. Phys. Rev. 37: 405-406. http://dx.doi.org/10.1103/PhysRev.37.405

[20] Onsager l. (1931). Reciprocal relations in irreversible processes-II. Phys. Rev. 38: 2265-2266. http://dx.doi.org/10.1103/PhysRev.38.2265

[21] Prasad KV, Vajravelu K. (2009). Heat transfer in the MHD flow of a power law fluid over a non-isothermal stretching sheet. Int. J. Heat Mass Transfer 52: 4956-4965. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.05.022