Contributionto the Study of Mechancal Properties of Hgh Density Polyethylene (HDPE) Under the Effect of Temperature and Modeling of Its Behaviour at 60 °C

Contributionto the Study of Mechancal Properties of Hgh Density Polyethylene (HDPE) Under the Effect of Temperature and Modeling of Its Behaviour at 60 °C

Sofiane Sadoun* Ali Gasmi Nasser Eddine Zeghib Ali Yousfi

Physique du solide (LPS),Badji Mokhtar University, BP12, Annaba 23000, Algeria

Mécanique des Matériaux et Maintenance Industrielle (LR3MI), Badji Mokhtar University, BP12, Annaba 23000, Algeria

Corresponding Author Email:
| |
31 December 2014
| Citation



These high density polyethylene samples (HDPE) were subject to a uniaxial tension under the influence of temperature ranging from 20 to $120^{\circ} \mathrm{C}$ at a constant stretching speed of $50 \mathrm{mn} / \mathrm{mn}$ and at various stretching speeds of 50 to $800 \mathrm{mn} / \mathrm{mn}$ for a constant temperature of $60^{\circ} \mathrm{C}$. The material has shown various mechanical behaviors resulting in various nominal curbs. The evolution of the mechanical magnitudes has been monitored based on the two mentioned external influences. We have shown the analogy of the effect of the temperature decrease and the speed increase. In order to transform the nominal curbs into true curves, we have assumed a relation whose implementation has given a good compliance with the bibliographical research. By selecting the curve achieved a $60^{\circ} \mathrm{C}$ for a stretching speed of $50 \mathrm{mn} / \mathrm{mn}$ with the assumption that the polymer is isotropic, the plain deformation homogenous perfect plastic and for a triaxibility coefficient $F_{T}=1,08 \mathrm{TT}$; the implementation of Von Mises relations has allowed us to complete an effective curb. The latter has given a good compliance with the multiplicative curve, modeled according the G'SELL law.


HDPE, mechanical properties, true curb, effective curb, modeling

1. Introduction
2. Experimental Study
3. Results and Observations
4. Analysis and Discussions
5. Results Analysis
6. Interpretation
7. Physical Approach of the Obtained Curves
8. Various Bibliographic Simulations
9. Mechanical Behavior Modeling at 60 °C
10. Conclusion

[1] G.W. Ehrenstein and F. Montagne, Matériaux Polymères: Structure, Propriétés et Applications, Hermès Science Publications, 2000 .

[2] F. Addiégo, Caractérisation de la Variation Volumique du Polyéthylène au Cours de la Déformation Plastique en Traction et en Fluage, thesis, Institut National Polytechnique de Lorraine, 2006.

[3] D. Li, H. Garmestani, S. R. Kalidindi and R. Alamo, Crystallographic Texture Evolution in High Density Polyethylene During Uniaxial Tension, polymer, 42, pp. 4903-4913, 2001.

[4] J. Rault, Les Polymères Solides, Edition Cepadues, Toulouse, France, 2002.

[5] R. Khelif, Analyse de la Rupture et Evaluation de la Durée de Vie Basée sur la Fiabilité des Tubes en Polyéthylène pour Le Transport du Gaz, thesis, Université Blaise PascalClermont II, 2007 .

[6] A.J Peacock, Handbook of Polyethylene "Structure, Properties and Applications", New York, NY: Marcel Dekker, 2000. 

[7] R. Arieby, Caractérisation Mécanique et Modélisation Thermodynamique du Comportement Anisotrope du Polyéthylène à Haute Densité. Intégration des Effets D'endommagement, thesis, Institut National Polytechnique de Lorraine (INPL), Université de Nancy, 2007 .

[8] R. Dossogne, Polyéthylène Haute Densité, Technique de L'ingénieur, DOC. A3315, pp. 1-10.

[9] R.W. Warfield, Compressibility of Linear Polymers, Journal of Applied Chemistry, vol 17,  issue 9, pp. 263-268, 1967.

[10] Y. Zhao, J. Wang, Q.C.Z. Liu, M. Yang and J. Shen, High-Pressure Raman Studies of Ultra-High-MolecularWeight Polyethylene, Polymer Paper, vol 31, issue 8, pp. 1425-1428, 1990.

[11] C.W. Bunn, Crystal Structure of Long- Chain Normal Paraffin Hydrocarbons "Shape" of The Methylene Group, Transaction of the Faraday Society, vol 35, pp. 482-491, 1939.

[12] L. Lin and A.S. Argon, Structure and Plastic Deformation of Polyethylene, Journal of Materials Science 29, pp. 294-323, 1994.

[13] M. Hikosaka, K. Tsukijima, S. Rastogi and A. Keller, Equilibrium Triple Point Pressure and Pressure-Temperature Phase Diagram of Polyethylene, Polymer Physics, vol 33, pp. 2502-2507, 1992.

[14] S. Rastogi, M. Hikosaka, H. Kawataba and A. Keller, Role of Mobile Phases in The Crystallization of Polyethylene, Metastability and Lateral Growth, Macromolecules, vol 24, pp. 6384-6391, 1991.

[15] S. Rastogi, L. Kurelec and P.J. Lemstra, Crystal Size Influence in Phase Transition and sintering of Ultrahigh Molecular Weight Polyethylene Via The Mobile Hexagonale Phase, Macromolecules, vol 31, issue 15, pp. 5022-5031, 1998.

[16] F. Bustos, Cristallisation sous Cisaillement du Polyéthylène: Effets de L'architecture Moléculaire, thesis, Université Claude Bernard, Lyon 1; 2004.

[17] K.E. Russell, B.K. Hunter and R.D. Heyding, Monoclinic Polyethylene Revisited, Polymer, vol 38, N' 6, pp. 1409-1414, 1997.

[18] L. Fontana, D.Q. Vinh, M. Santaro, S. Scandalo, F.A. Gorelli, R. Binni, and M. Hanfland, High Pressure Crystalline Polyethylene Studied By X Ray Diffraction and ab Inition Simulations, Physical Review, vol 75,  pp. 174112_{-} 1-174112_{11}, 2007.

[19] B. Taher, S. Abboudi and R. Younes, A Study of the Thermo-Elastic Damage in the Cylender of an Engine, International Journal of Heat and Technology, vol 28, $\mathrm{N}^{\circ} 2$, 2010.

[20] M. Madani, Structure Optical and Thermal Decomposition Characters of LDPE Graft Copolymers Synthesized by Gamma Irradiation, Indian Academy of Sciences, vol 33, $\mathrm{N}^{\circ} 1$,  pp. 65-73, 2010.

[21]  J. Cazénave, Sur Le Compromise Rigidité/ Durabilité du Polyéthyléne à Haute Densité en Relation avec La Structure de Chaine, La Microstructure et La Topologie Moléculaire Issue de La Cristallisation, thesis, Institut National des Sciences Appliquées de Lyon, 2005

22. H.H. Kauch and E. Al, Crazing in Semicrystalline Thermoplastic, Journal of Macromolecular Science, part B Physics, B38 (5-6), pp. 803-815, 1999.

[23] A. Peterlin, Molecular Model of Drawing Polyethylene and Polypropylene, Journal of Material Science, B6(6), pp. 490-508, 1971.

[24] A. Yezza, Résistance à La Fissuration Sous Contraintes des Soudures des Géomembranes Polyéthyléne Haute Densité, Mémoire en Science Appliquée, Ecole Polytechnique de Montréal, 2001 .

[25] M. Carrega and E. Coll, Matériaux Industriels, Matériaux Polymères, Edition Dunod, Paris; 2000 .

[26] J.M. Dorlot, J.P. Bailon and J. Masounave, Des Matériaux, Ecole Polytechnique de Montréal ; 1986

[27] F. Addiego, A. Dahoun, C. G'sell and J.M. Hiver, volume variation process of high density polyethylene during tensile and creep tests, oil \& science and technology, rev, IFP, vol 61, pp. 715-724, 2006.

[28]  Y. Tillier, Identification par Analyse Inverse du Comportement Mécanique des Polymères Solides, Applications Aux Sollicitations Multiaxiales et Rapides, thesis, Ecole Nationale Supéricure des Mines de Paris, 1998 .

[29] Ferhoum R, Etude Expérimentale et Modélisation Numérique du Comportement Mécanique du PEHD à L'état Vierge et Après Vieillissement Thermique, thesis, Université Mouloud MAMMERI de Tizi-Ouzou, Algéria, 2012 .

[30] A. Molinari et C. G'sell, Instabilités Plastiques Dans Les Polymères, pp. 321-344, 1995.

[31] S.J.K. Ritchic, A model for the large strain deformation of polyethylene, Journal of Materials Science, $35,$ pp. 5829 $5837,2000$

[32] C. G'sell and A. Dahoun, Evolution of Microstructure in Semi Crystalline Polymer under Large Deformation, Materials Sciences and Engineering, A175, pp. 183-199, 1994.

[33] T. A. Vest, J. Amoedo and D. Lee, Effects of Thermal History, Crystallinity, and Solvent on the Transitions and Relaxations in Poly (bisphenal-A carbonate), Journal of Polymers Sciences, 20, pp. 141-154, 1982.

[34] C. G'sell, Instabilités de Déformation Pendant L'étirage des Polymères Solides, Revue phys. Appl. vol 23, pp. 1085-1101, 1988.

[35] M. Lucero, Etude des Instabilités d'étirage dans des Films Minces de Poly (Téréphtalate D'éthylène Glycol), thesis, Nancy, 1986.

[36] P. W. Bridgman, Studies in Large Plastic Flow and Fracture, Harvard University Press, Cambridge, M.A, USA, 1964.

[37] P. W. Bridgman, The Stress Distribution at The Neck of Tension Specimen, Trans. Am. Soc, Metals, vol 32, pp.553-574, 1944.