Three-Dimensional Numerical Investigation on a Commercial Vortex Tube Based on an Experimental Model- Part I: Optimization of the Working Tube Radius

Page:

49-56

DOI:

https://doi.org/10.18280/ijht.310107

OPEN ACCESS

Abstract:

The working tube is a main part of vortex tube which the process of energy separation occurs inside this part. An appropriate design of working tube geometry leads to better vortex tube efficiency. A main objective of this paper is to study the effect of working tube radius (R_{WT}) variations on the energy separation phenomena. The computational fluid dynamics (CFD) model is created based on an experimental model and is a three-dimensional (3D) steady compressible model that utilizes the k-ε turbulence model to solve the flow equations. In this paper the effect of R_{WT}variations has been studied in range of R_{WT}=4.5mm-5.7mm and the optimized radius has been determined. Another purpose of this investigation is the demonstration of the successful use of CFD in order to develop a design tool that can be utilized with confidence over a range of operating conditions and geometries. The maximum ΔT_{c} is 46.75 K for R_{WT}=4.9 mm at cold mass fraction α=0.3, higher than basic model around 6.8%.

Keywords:

*CFD simulation, efficiency, optimization, vortex tube, working tube*

References

[1] Ranque, G.J. Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air (1933) J. Phys. Radium, 4, pp. 112-115. (Paris)

[2] Hilsch, R. The use of the expansion of gases in a centrifugal field as cooling process (1947) Review of Scientific Instruments, 18 (2), pp. 108-113. doi: 10.1063/1.1740893

[3] Acoustic streaming in swirling flow and the Ranque-Hilsch (vortex-tube) effect

[4] (1982) Journal of Fluid Mechanics, 124, pp. 139-172. doi: 10.1017/S0022112082002444

[5] Stephan, K., Lin, S., Durst, M., Huang, F., Seher, D. An investigation of energy separation in a vortex tube (1983) International Journal of Heat and Mass Transfer, 26 (3), pp. 341-348. doi: 10.1016/0017-9310(83)90038-8

[6] Dincer, K., Baskaya, S., Uysal, B.Z. Experimental investigation of the effects of length to diameter ratio and nozzle number on the performance of counter flow Ranque-Hilsch vortex tubes (2008) Heat and Mass Transfer/Waerme- und Stoffuebertragung, 44 (3), pp. 367-373. doi: 10.1007/s00231-007-0241-z

[7] Ahlborn, B.K., Gordon, J.M. The vortex tube as a classic thermodynamic refrigeration cycle (2000) Journal of Applied Physics, 88 (6), pp. 3645-3653. http://scitation.aip.org.ezproxy3.lhl.uab.edu/content/aip/journal/jap doi: 10.1063/1.1289524

[8] Akhesmeh, S., Pourmahmoud, N., Sedgi, H. Numerical study of the temperature separation in the Ranque-Hilsch vortex tube (2008) Am. J. Eng. Appl. Sci, 3, pp. 181-187.

[9] Aljuwayhel, N.F., Nellis, G.F., Klein, S.A. Parametric and internal study of the vortex tube using a CFD model (2005) International Journal of Refrigeration, 28 (3), pp. 442-450. doi: 10.1016/j.ijrefrig.2004.04.004

[10] Skye, H.M., Nellis, G.F., Klein, S.A. Comparison of CFD analysis to empirical data in a commercial vortex tube (2006) International Journal of Refrigeration, 29 (1), pp. 71-80. doi: 10.1016/j.ijrefrig.2005.05.004

[11] Bramo, A.R., Pourmahmoud, N. Computational fluid dynamics simulation of length to diameter ratio effects on the energy separation in a vortex tube (2011) Thermal Science, 15 (3), pp. 833-848. http://thermalscience.vinca.rs.ezproxy3.lhl.uab.edu/pdfs/papers-2011/TSCI101004008B.pdf doi: 10.2298/TSCI101004008B

[12] Sohn, C.-H., Kim, C.-S., Jung, U.-H., Lakshmana Gowda, B.H.L. Experimental and numerical studies in a vortex tube (2006) Journal of Mechanical Science and Technology, 20 (3), pp. 418-425. doi: 10.1007/BF02917525

[13] Polat, K., Krmac, V. Determining of gas type in counter flow vortex tube using pairwise fisher score attribute reduction method (2011) International Journal of Refrigeration, 34 (6), pp. 1372-1386. doi: 10.1016/j.ijrefrig.2011.05.010

[14] Pourmahmoud, N., Zadeh, A.H., Moutaby, O., Bramo, A. Computational fluid dynamics analysis of helical nozzles effects on the energy separation in a vortex tube (2012) Thermal Science, 16 (1), pp. 151-166. http://www.doiserbia.nb.rs.ezproxy3.lhl.uab.edu/img/doi/0354-9836/2012/0354-98361100085P.pdf doi: 10.2298/TSCI110531085P

[15] Pourmahmoud, N., Hassanzadeh, A., Moutaby, O. Numerical analysis of the effect of helical nozzles gap on the cooling capacity of Ranque-Hilsch vortex tube (2012) International Journal of Refrigeration, 35 (5), pp. 1473-1483. doi: 10.1016/j.ijrefrig.2012.03.019 Exair Corporation. Vortex tubes and spot cooling products http://www.exair.com]

[16] Pourmahmoud, N., Hassanzadeh, A., Rafiee, S.E., Rahimi, M. Three-dimensional numerical investigation of effect of convergent nozzles on the energy separation in a vortex tube (2012) International Journal of Heat and Technology, 30 (2), pp. 133-140. http://www.iieta.org/Journals/IJHT/Archive doi: 10.18280/ijht.300219

[17] Gutsol, A.F. The Ranque effect (1997) Physics-Uspekhi, 40 (6), pp. 639-658. doi: 10.1070/PU1997v040n06ABEH000248