LCA Analysis of a Solar Concentration System for the Micro-CHP and Comparison with a PV plant

LCA Analysis of a Solar Concentration System for the Micro-CHP and Comparison with a PV plant

M. Cucumo V. Ferraro  V. Marinelli  S. Cucumo  D. Cucumo 

Department of Mechanical Engineering - University of Calabria - 87036 Rende (CS), Italy

Corresponding Author Email: 
@ m.cucumo
30 June 2021
| Citation



Life Cycle Assessment (LCA) is one of the main instruments for the implementation of an Integral Policy of Products, and it is also an operating instrument of Life Cycle Thinking: LCA is an objective methodology of assessment and quantification of the energetic and environmental loads and of the potential impacts associated with a product/process/activity throughout the entire lifecycle, from the acquisition of raw materials up to disposal.

The results of an LCA analysis applied to a solar concentrating type Dish-Stirling for micro-CHP are presented in this work. An estimate of the environmental impacts of the concentration system, in comparison with impacts of a PV system located on a sloped roof with a retrofit system and of the Italian energy mix, is also performed by the Eco-indicator 99, and EPD 2007 methods.

1. Introduction
2. System Description
3. Functional Unity and Disposal Scenario
4. Energy Analysis
5. Impact assessment with Eco-indicator 99 Method
6. Impact Assessment with EPD 2007 Method
7. Conclusions

[1] Gian Luca Baldo, Massimo Marino, Stefano Rossi, Analisi del ciclo di vita LCA: Materiali, prodotti,

processi, Edizioni Ambiente, 2005.

[2] Paolo Neri, Verso la valutazione ambientale degli edifici – Life Cycle Assessment a supporto della progettazione eco-sostenibile, Alinea Editrice, Firenze 2007.

[3] Sociey of Environmental Toxicology and Chemistry (SETAC): Guidelines for Life-Cycle Assessment, A

“Code of Practise”; SETAC Workshop in Seimbra 31/03-03/04/1993, Brussels, 1993.

[4] UNI EN ISO 14001 (1996): Sistemi di gestione ambientale, requisiti e guida per l’uso.

[5] UNI EN ISO 14040 (1998): Valutazione del ciclo divita, principi e quadro di riferimento.

[6] UNI EN ISO 14041 (1999): Valutazione del ciclo divita, definizione dell’obiettivo e del campo diapplicazione e analisi di inventario.

[7] UNI EN ISO 14042 (2001): Valutazione del ciclo divita, valutazione dell’impatto del ciclo di vita.

[8] UNO EN ISO 14043 (2001): Valutazione del ciclo divita, interpretazione del ciclo di vita.

[9] K. Lovegrave, T. Taumoefolau, S. Paitoonsurikarn, P.Siangsukone, G. Burgess, A. Luzzi, G. Johnston, O.

Becker, W. Joe, G. Major, Paraboloidal dish solarconcentrator for multi-megawatt power generation, in

Proc. 2003 International Solar Energy Society – SolarWorld Congress. Gothenburg, Sweden.

[10] P. Siansukone, K. Lovegrave, Modelling of 400 m2steam based paraboloidal dish concentrator for solar

thermal power production, in Proc. 2003 Annual Conference of the Australian and New Zealand Solar

Energy Society, Melbourne, Australia.

[11] Stephen, Charles, Andrew Nicholas, A linear free-piston Stirling Machine, Publication n° WO 2006/067429 A1,June 2006.

[12] ANPA, 2000. Database I-LCA, Banca dati italiana a supporto della valutazione del ciclo di vita: manuale.

[13] CPM, Chalmers University of Technology, Banca datiper LCA

[14] IPPC, 2001, Best Available Techniques Reference Document on the Production of Iron and Steel,

Integrated Pollution Prevention and Control, European Commission, December 2001.

[15] Karl. E.K., Theresa, L.J., 2002, Initial empirical results for the energy payback time of photovoltaic modules,

Siemens Solar Industries, Camarillo.

[16] Mario A. Cucumo, Valerio Marinelli, Giuseppe Oliveti, Ingegneria solare – Principi e applicazioni, Pitagora

Editrice, Bologna.

[17] Pré Consultans B.V. Plotterweg, The Eco-Indicator 99, methodology report, April 2000.

[18] ANPA, Linee guida per la dichiarazione ambientale diprodotto EPD, March 2001.