Optimal Experiment Duration and Model Choice for Thermal Diffusivity Estimation Using the Flash Apparatus

Optimal Experiment Duration and Model Choice for Thermal Diffusivity Estimation Using the Flash Apparatus

F. Mzali F. Albouchi 

Laboratoire d’Etudes des Systèmes Thermiques et Energétiques (LESTE-ENIM), Ecole Nationale d’Ingénieurs de Monastir, Avenue Ibn El Jazzar, Monastir 5019, Tunisia;

Corresponding Author Email: 
30 June 2012
| Citation



In this study, optimal experiment design is performed in order to choice the thermal model and the optimal duration of the flash experiment. The thermal diffusivity estimation is performed using the Levenberg–Marquardt algorithm by minimizing the ordinary least squares function, describing the gap between measured and calculated temperature response. Different thermal models based on analytical or numerical resolutions of the heat equation are studied. The developed models take into account heat losses on front, rear, or/and lateral surfaces. Experimental thermal diffusivity measurements are then completed on 2017 A Aluminum alloy.


flash method, parameter estimation, inverse problem, finite volume method, optimal experiment design

1. Introduction
2. Direct Problem
3. Inverse Problem
4. Results and Discussion
5. Conclusion

[1] W J Parker, R J Jenkins, C P Butler and G L Abbott, J. Appl. Phys. 32: 1679 (1961).

[2] A. Degiovanni, Rev. Gén. Therm. 185: 417 (1977).

[3] L. Vozar, Flash Method for thermal diffusivity measurement: Theory and Praxis (Constantine the Philosopher University in Nitra, Oto Kanas Nitra, 2001).

[4] J V Beck, K Arnold, Parameter estimation in engineering and science (John Wiley and Sons, NewYork, 1977).

[5] M N Ozisik, H R B Orlande, Inverse heat transfer (Taylor & Francis, NewYork, 2000)

[6] M. N. Ozisik, Heat transfer (Wiley -interscience publication, USA, 1985).

[7] S.V. Patankar, Numerical Heat transfer and fluid flow (Hemisphere Mc. Graaw-Hill, NewYork, 1980).

[8] F Mzali, L Sassi, A Jemni, S Ben Nasrallah, D Petit, Inverse Problems in Science Engineering, 12: 2: 193 (2004).

[9] W.H. Press, B.P. Flannery, S.A. Teukolsky,W.T. Vetterling, Numerical recipes in PASCAL (Cambrigde University Press, 1990).