A Comprehensive Model for Evaluating the Performance of Proton Exchange Membrane Fuel Cells

A Comprehensive Model for Evaluating the Performance of Proton Exchange Membrane Fuel Cells

F. Khemili M. Najjari S. Ben Nasrallah 

Laboratoire d’Etudes des Systèmes Thermiques et Energétiques, Ecole Nationale d’Ingénieurs de Monastir, Avenue Ibn El Jazzar, 5019 Monastir, Tunisie

Faculté des Sciences de Gabès, Cité Riadh, Zirig 6072 Gabès, Tunisia

30 June 2012
| Citation



Modeling plays an important role in the development of Proton Exchange Membrane Fuel Cell (PEMFC), because it allows a better comprehension of the parameters affecting the fuel performances. PEMFC performances are strongly related to the mechanisms of mass transfer in the stack. The objective of this study is to develop a comprehensive model describing the transport phenomena in the cell and these influences on the fuel performances. First, we present the electrochemical model that takes into account the thermodynamic open circuit voltage and different voltage losses. Second, we present gas diffusion in porous electrodes, water diffusion and electro-osmotic transport through the polymeric membrane. The solutions of the mass transfer equations are used to calculate the fuel cells performances at different operating conditions.

1. Introduction
2. Mathematical Model
3. Resultas and Discussions
4. Conclusions

[1] Bernardi D M, Verbrugge M W. A mathematical model of the solid-polymer-electrolyte fuel cell. J. Electrochem. Soc., vol 139, pp. 2477-2491, 1992

[2] Springer T E, Zawodzinski T A, Gottesfeld S. Polymer electrolyte fuel cell model. J. Electrochem. Soc., vol 138, pp. 2334-2342, 1991

[3] Amphlett JC, Baumert RM, Mann RF, Peppley BA, Roberge PR, Harris TJ. Performance modeling of the ballard mark IV solid polymer electrolyte fuel cell. J Electrochem Soc. Vol 142, pp. 1-8, 1995

[4] Prodip K. Das, Xianguo Li, Zhong-Sheng Liu, Analysis of liquid water transport in cathode catalyst layer of 8 PEMFCs. Int. J. of Hydrogen Energy, vol 35, pp. 2403-2416, 2010

[5] Najjari, M., Khemili, F. and Ben Nasrallah, S., The effects of the cathode flooding on the transient responses of a PEM fuel cell. J. Renewable Energy, vol 33, pp. 1824-1831, 2008

[6] Khemili, F, Najjari, M., Ben Khadher, N and Ben Nasrallah, S., Two-dimensional modelling of Transport phenomena by (CVFE) method in the porous cathode of a PEM fuel cell. J. of Porous Media, vol 12, pp. 1305-1317, 2009.

[7] A tow-dimensional, transient and isothermal model for the air cathode of PEM fuel cells, Int. J. Heat and Technology, article in press.

[8] Kim J, Lee S-M, Srinivasan S, Chamberlin CE. Modeling of proton exchange membrane fuel cell performance with an empirical equation. J Electrochem Soc., vol 142, pp. 2670-2674, 1995.

[9] Lee JH, Lalk TR, Appleby AJ. Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks. J Power Sources, vol 71, pp. 258–68, 1998.

[10] Korsgaard AR, Refshauge R, Nielsen MP, Bang M, Kær SK. Experimental characterization and modeling of commercial polybenzimidazole based MEA performance, J. Power Sources, vol 162, pp. 239-245, 2006.

[11] M.G. Santarelli , M.F. Torchio, P. Cochis. Parameters estimation of a PEM fuel cell polarization curve and analysis of their behavior with temperature. Journal of Power Sources, vol 159, pp. 824-835, 2006.

[12] Hyunchul Ju, Hua Meng, Chao-Yang Wang, A singlephase, non-isothermal model for PEM fuel cells, Int. J. of Heat and Mass Transfer, vol 48, pp. 1303-1315.

[13] Sophie Didierjeana, Olivier Lottin, Gael Maranzana, Thierry Geneston, PEM fuel cell voltage transient response to a thermal perturbation. J. Electrochimical Acta, vol 53, pp. 7313-7320, 2008.

[14] K.T. Jeng, S.F. Lee, G.F. Tsai, C.H. Wang. Oxygen mass transfer in PEM fuel cell gas diffusion layers. Journal of Power Sources, vol 138, pp. 41-50, 2004.

[15] T.A. Zawodzinski, T.E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, S. Gottesfeld, A comparative study of water uptake by and transport through ionomeric fuel cell membranes, J. Electrochem. Soc., vol 140, pp. 1981-1985, 1993.

[16] J.T. Hinatsu, M. Mizuhata, H. Takenaka, Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor, J. Electrochem. Soc., vol 141, pp. 1493-1498, 1994.

[17] Berning T, Djilali N. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell-a parametric study. J Power Sources, 124, pp. 440-452, 2003.