Analysis of sugarcane ethanol production for energy development: Case study Ecuador

Analysis of sugarcane ethanol production for energy development: Case study Ecuador

Gricelda Herrera-Franco Carlos Mora-Frank Grace Arteaga Alberto López Paúl Carrión-Mero

Facultad de Ciencias de la Ingeniería, Universidad Estatal Península de Santa Elena, UPSE, Ecuador

Geo-Recursos y Aplicaciones, GIGA, Escuela Superior Politécnica del Litoral, ESPOL, Ecuador

Asociación de Productores de Caña de Azúcar del Cantón Milagro, APCAM, Ecuador

Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra, CIPAT, Escuela Superior Politécnica del Litoral, ESPOL, Ecuador

Facultad de Ingeniería en Ciencias de la Tierra, FICT, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Ecuador

Page: 
293-309
|
DOI: 
https://doi.org/10.2495/EQ-V7-N4-293-309
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

© 2022 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

OPEN ACCESS

Abstract: 

The global energy issue is crucial for the development of the population and the environmental protection of the planet. The agricultural sector is part of economic, social and environmental development. However, in Ecuador, this sector has internal problems due to the suspension of the bioconversion project (e.g., ethanol production). This study aims to analyse the situation of sugarcane ethanol production in Ecuador and, through information management, to search for development strategies. The methodology includes the following: (i) sugarcane production analysis in Ecuador and ethanol distribution; (ii) policies and legal context concerning renewable energies and biofuels production in Ecuador; (iii) Political, Economic, Social, Technological, Ecological and Legal (PESTEL) as well as Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis of ethanol production, based on the criteria of the experts involved and (iv) strategic guidelines for sustainable sugarcane ethanol development. Ecuador has a potential for sugarcane ethanol production that is currently not fully exploited; that is, the consumption of this resource would reduce energy demand and economic problems in the agricultural sector. Sugarcane ethanol production has generated a direct contribution to the country’s Gross Domestic Product (0.5%) and a contribution to social growth (751,799 people benefited). Ethanol production could increase by 20%, generating new alternatives for biofuel consumption. This progress in Ecuador would strengthen the contribution to the Sustainable Development Goals criteria and benefit the population with new job opportunities (approximately 42,000). Therefore, the production of ethanol from sugarcane, under a legal framework, benefits economic, social and ecological relations.

Keywords: 

biofuels, bioethanol, Ecuador, energy development, renewable energy, sugarcane

  References

[1] Rahman, M. M. & Alam, K., Clean energy, population density, urbanization and environmental pollution nexus: Evidence from Bangladesh. Renewable Energy, 172, pp. 1063–1072, 2021. https://doi.org/10.1016/j.renene.2021.03.103

[2] Herrera-Franco, G., Montalván-Burbano, N., Mora-Frank, C. & Moreno-Alcívar, L., Research in petroleum and environment: A bibliometric analysis in South America. International Journal of Sustainable Development & Planning, 16(6), pp. 1109–1116, 2021. https://doi.org/10.18280/ijsdp.160612

[3] The Global Goals, The Global Goals for Sustainable Development, 2015. https://www.globalgoals.org/. Accessed on: Oct. 25, 2021

[4] Østergaard, P. A., Duic, N., Noorollahi, Y., Mikulcic, H. & Kalogirou, S., Sustainable development using renewable energy technology. Renewable Energy, 146, pp. 2430–2437, 2020. https://doi.org/10.1016/j.renene.2019.08.094

[5] Ntanos, S., et al., Renewable energy and economic growth: Evidence from European countries. Sustainability, 10(8), p. 2626, 2018. https://doi.org/10.3390/su10082626

[6] Herrera-Franco, G., Erazo, K., Mora-Frank, C., Carrión-Mero, P. & Berrezueta, E., Evaluation of a paleontological museum as geosite and base for geotourism. A case study. Heritage, 4(3), pp. 1208–1227, 2021. https://doi.org/10.3390/heritage4030067

[7] Koengkan, M., Poveda, Y. E. & Fuinhas, J. A., Globalisation as a motor of renewable energy development in Latin America countries. GeoJournal, 85(6), pp. 1591–1602, 2020. https://doi.org/10.1007/s10708-019-10042-0

[8] Herrera-Franco, G., Escandón-Panchana, P., Erazo, K., Mora-Frank, C. & Berrezueta, E., Geoenvironmental analysis of oil extraction activities in urban and rural zones of Santa Elena Province, Ecuador. International Journal of Energy Production & Management, 6(3), pp. 211–228, 2021. https://doi.org/10.2495/EQ-V6-N3-211-228

[9] Pinzón, K., Dynamics between energy consumption and economic growth in Ecuador: A granger causality analysis. Economic Analysis & Policy, 57, pp. 88–101, 2018. https://doi.org/10.1016/j.eap.2017.09.00

[10] FAO, La Bioenergía en América Latina y El Caribe. El estado de arte en países seleccionados, Santiago, Chile: Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO), 2013.

[11] Terneus Páez, C.F. & Viteri Salazar, O., Analysis of biofuel production in Ecuador from the perspective of the water-food-energy nexus. Energy Policy, 157, 112496, 2021. https://doi.org/10.1016/j.enpol.2021.112496

[12] Pasqual, J. C., Lardizabal, C. C., Herrera, G., Bollmann, H. A. & Nunes, E. O., Waterenergy-food nexus: Comparative scenarios and public policy perspectives from some Latin American countries regarding biogas from agriculture and livestock. Journal of Agricultural Science & Technology A, 5(6), pp. 408–427, 2015. https://doi.org/10.17265/2161-6256/2015.06.004

[13] Alvarado Vélez, J. A., Vélez Bravo, G. P. & Mila Carvajal, F., El sector primario: ¿Contribuye al crecimiento económico del Ecuador?. Rev. Hallazgoz21, 2(2), pp. 158–167, 2017.

[14] Cifras Agroproductivas, Sistema de Información Pública Agropecuaria, 2020. http://sipa.agricultura.gob.ec/index.php/cifras-agroproductivas (accessed Oct. 26, 2021).

[15] Paguay García, M. V., Evaluación de riesgos laborales en la producción de alcohol destilado de la caña de azúcar en Ecuador, Universidad Politécnica de Valencia, 2016.

[16] CINCAE, Utilización de subproductos de la caña de azúcar y de la industria alcoholera ecuatoriana para uso en la fertilización en los cultivos de caña, Centro de Investigación de la Caña de Azúcar del Ecuador (CINCAE), 2013. https://cincae.org/utilizacion-desubproductos-de-la-cana-de-azucar-y-de-la-industria-alcoholera-ecuatoriana-para-usoen-la-fertilizacion-en-los-cultivos-de-cana/

[17] Ministerio de Agricultura y Ganadería, Ecuador marca su rumbo en la industria de los agrocombustibles, 2019. https://www.agricultura.gob.ec/ecuador-marca-su-rumbo-enla-industria-de-los-agrocombustibles/

[18] Polanco Pacheco, C.A., Optimum technology network for ethanol production and electricity cogeneration in Ecuador, University of Twente (UT), 2016.

[19] Martínez Olaya, H.E., Análisis del uso de biocombustibles en Ecuador periodo 2010–2017, Universidad Católica de Santiago de Guayaquil, 2018.

[20] Pacheco, J., Ochoa-Moreno, W.-S., Ordoñez, J. & Izquierdo-Montoya, L., Agricultural diversification and economic growth in Ecuador. Sustainability, 10(7), p. 2257, 2018. https://doi.org/10.3390/su10072257

[21] Arroyo, F. R. & Miguel, L. J., The role of renewable energies for the sustainable energy governance and environmental policies for the mitigation of climate change in Ecuador. Energies, 13(15), p. 3883, 2020. https://doi.org/10.3390/en13153883

[22] Pelaez, M. & Espinoza, J., Energías renovables en el Ecuador: situación actual, tendencias y perspectivas. Cuenca, Ecuador: Universidad de Cuenca, 2015.

[23] Icaza, D. & Borge-Diez, D., Potential sources of renewable energy for the energy supply in the city of Cuenca-Ecuador with towards a smart grid. 8th International Conference on Renewable Energy Research and Applications (ICRERA), pp. 603–610, 2019.

[24] Herrera-Franco, G., Carrión-Mero, P. & Alvarado M., N., Participatory process for local development: Sustainability of water resources in rural communities: Case Manglaralto-Santa Elena, Ecuador, pp. 663–676, 2018.

[25] Herrera-Franco, G., Gavín-Quinchuelaa, T., Alvarado-Macancela, N. & Carrión-Mero, P., Participative analysis of socio-ecological dynamics and interactions. A case study of the Manglaralto Coastal Aquifer, Santa Elena-Ecuador. Malaysian Journal of Sustainable Agriculture, 1(1), pp. 19–22, 2017. https://doi.org/10.26480/mjsa.01.2017.19.22

[26] MAG, Sector Cañicultor y acciones del Ministerio de Agricultura, Ministerio de Agricultura y Ganadería (MAG), 2019. https://www.agricultura.gob.ec/sector-canicultor-yacciones-del-ministerio-de-agricultura/ Accessed on: Nov. 15, 2021.

[27] EP Petroecuador, Cifras Institucionales, Empresa Pública Petroecuador, 2021. https://www.eppetroecuador.ec/?p=3721. Accessed on: Nov. 15, 2021.

[28] S&P Global Platts, S&P Global Platts. https://www.spglobal.com/platts/es. Accessed on: Dec. 10, 2021.

[29] Asamblea Nacional del Ecuador, Constitución de la República del Ecuador, Quito-Ecua-dor, 449, 2008. https://www.defensa.gob.ec/wp content/uploads/downloads/2021/02/Constitucion-de-la-Republica-del-Ecuador_act_ene-2021.pdf

[30] Asamblea Nacional del Ecuador, Código Orgánico de la Producción, Comercio e Inver-siones, COPCI, Quito, Ecuador, 351, 2010. https://www.correosdelecuador.gob.ec/wpcontent/uploads/downloads/2018/11/COPCI.pdf

[31] Presidente Constitucional de la República, Decreto No. 675, Quito, Ecuador, 675, 2015. https://www.controlhidrocarburos.gob.ec/wpcontent/uploads/2018/09/COM-POSICIÓN-DISTRIBUCIÓN-Y-COMERCIALIZACIÓN-DE-GASOLINA-ECO-PAÍS-FIEL.pdf

[32] Presidente Constitucional de la República, Decreto ejecutivo No. 1183, Guayaquil, Ecuador, 1183, 2020. https://www.fielweb.com/App_Themes/InformacionInteres/Decreto_Ejecutivo_No._1183_20201004065505_20201004065525.pdf

[33] Dale, C., The UK tour-operating industry: A competitive analysis. Journal of Vacation Marketing, 6(4), pp. 357–367, 2000. https://doi.org/10.1177/135676670000600406

[34] Yüksel, I., Developing a multi-criteria decision making model for PESTEL Analysis. International Journal of Business & Management, 7(24), pp. 52–66, 2012. https://doi.org/10.5539/ijbm.v7n24p52

[35] Dyson, R. G., Strategic development and SWOT analysis at the University of Warwick. European Journal of Operations Research, 152(3), pp. 631–640, 2004. https://doi.org/10.1016/S0377-2217(03)00062-6

[36] Fernández-González, J. M., Martín-Pascual, J. & Zamorano, M., Biomethane injection into natural gas network vs composting and biogas production for electricity in Spain: An analysis of key decision factors. Sustainable Cities & Society, 60, 102242, 2020. https://doi.org/10.1016/j.scs.2020.102242

[37] Ruá, M. J., Huedo, P., Cabeza, M., Saez, B. & Agost-Felip, R., A model to prioritise sustainable urban regeneration in vulnerable areas using SWOT and CAME method-ologies. Journal of Housing & the Built Environment, 36(4), pp. 1603–1627, 2021. https://doi.org/10.1007/s10901-020-09813-w

[38] ARCH, Recurso, Agencia de Regulación y Control Hidrocarburífero (ARCH), 2017. https://www.controlhidrocarburos.gob.ec/wpcontent/uploads/2017/11/Revista-ARCH-2017.pdf. Accessed on: Nov. 26, 2021.

[39] Banapurmath, N. R. & Tewari, P.G., Performance, combustion, and emissions charac-teristics of a single-cylinder compression ignition engine operated on ethanol—bio-diesel blended fuels. Proc. Inst. Mech. Eng. Part A, Journal of Power & Energy, 224(4), pp. 533–543, 2010. https://doi.org/10.1243/09576509JPE850

[40] Cortez, L. A., Leal, M. R. L. & Nogueira, L. A. H., Sugarcane Bioenergy for Sustain-able Development: Expanding Production in Latin America and Africa, Routledge: Abingdon, England, 2019.

[41] Albarelli, J. Q., et al., Multi-objective optimization of a sugarcane biorefinery for inte-grated ethanol and methanol production. Energy, 138, pp. 1281–1290, 2017. https://doi.org/10.1016/j.energy.2015.06.104

[42] Thanarak, P., Supply chain management of agricultural waste for biomass utilization and CO2 emission reduction in the lower northern region of Thailand. Energy Procedia, 14, pp. 843–848, 2012. https://doi.org/10.1016/j.egypro.2011.12.1021

[43] Arshad, M., Sustainable Ethanol and Climate Change. Springer Nature: Cham, Swit-zerland, 2021.

[44] Fernando Iñiguez, J., Reyes, G. G., Rivera, C. A. & Vera, E. S., Estudio De Emisiones Contaminantes Producidas Por Un Motor Otto Con El Uso De Gasolina Y Un Combustible A Base De 95% De Gasolina Y 5% De Etanol. INNOVA Res. J., 2(12), pp. 11–18, 2017. https://doi.org/10.33890/innova.v2.n12.2017.571

[45] El Universo, Cañicultores reclaman valores por zafra y etanol, y rechazan importación de biocombustibles, El Universo, 2020. https://www.eluniverso.com/noticias/2020/09/29/nota/7995364/protesta-planton-canicultores-etanol-zafra-azucar-mag/. Accessed on: Nov. 15, 2021.

[46] Restrepo-Serna, D., Martínez-Ruano, J. & Cardona-Alzate, C., Energy efficiency of biorefinery schemes using sugarcane bagasse as raw material. Energies, 11(12), p. 3474, 2018. https://doi.org/10.3390/en11123474

[47] Fazio, S. & Barbanti, L., Energy and economic assessments of bio-energy systems based on annual and perennial crops for temperate and tropical areas. Renewable Energy, 69, pp. 233–241, 2014. https://doi.org/10.1016/j.renene.2014.03.045

[48] Souza, S. P. & Seabra, J. E. A., Environmental benefits of the integrated production of ethanol and biodiesel. Applied Energy, 102, pp. 5–12, 2013. https://doi.org/10.1016/j.apenergy.2012.09.016

[49] El-Faroug, M., Yan, F., Luo, M. & Fiifi Turkson, R., Spark ignition engine combustion, performance and emission products from hydrous ethanol and its blends with gasoline. Energies, 9(12), p. 984, 2016. https://doi.org/10.3390/en912098