Photonic Architectures in Beetles: Twists and Iridescence

Photonic Architectures in Beetles: Twists and Iridescence

L.T. Mcdonald T.A. Starkey P. Vukusic

School of Physics, University of Exeter, UK

Page: 
266-275
|
DOI: 
https://doi.org/10.2495/DNE-V9-N4-266-275
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The order Coleoptera is, by any standard, a prodigious showcase for the extraordinary creativity and flexibility of the evolutionary process. Concurrent with a desire to overcome the present limitations of optical coating technol- ogies, a number of novel and elegant reflectance mechanisms have been discovered in the realms of biological systems including 3D photonic crystals and quasi-ordered coherent scattering arrays. Beetles, in particular, pos- sess many desirable and, crucially, tunable properties from a biomimetic perspective. Here, we provide a detailed discussion of two coleopteran structures, namely 1D multilayers and helically arranged ‘Bouligand’ structures, and consider their putative entomological functions and potential applications in bioinspired technologies.

Keywords: 

beetles, biomimetics, broadband, circular polarisation, iridescence, multilayer, optical activity, structural colour

  References

[1] Fox, D.L., Animal Biochromes and Structural Colours, University of California Press: Berkeley, CA, 1976.

[2] Srinivasarao, M., Nano-optics in the biological world: beetles, butterfl ies, birds, and moths. Chem Rev, 99(7), pp. 1935–1961, 1999. doi: http://dx.doi.org/10.1021/cr970080y

[3] Vukusic, P. & Sambles, J.R., Photonic structures in biology. Nature, 424, pp. 852–855, 2003. doi: http://dx.doi.org/10.1038/nature01941

[4] Shawkey, M.D., Morehouse, N.I. & Vukusic, P., A protean palette: colour materials and mixing in birds and butterfl ies. J R Soc Int, 6, pp. S221–S231, 2009. doi: http://dx.doi.org/10.1098/ rsif.2008.0459.focus

[5] Mathger, L.M., Denton, E.J., Marshall, N.J. & Hanlon, R.T., Mechanisms and behavioural functions of structural coloration in cephalopods. JR Soc Int, 6, pp. S149–S163, 2009. doi: http:// dx.doi.org/10.1098/rsif.2008.0366.focus

[6] Glover, B.J. & Whitney, H.M., Structural colour and iridescence in plants: the poorly studied relations of pigment colour. Annals of Botany, 105(4), pp. 505–11, 2010. doi: http://dx.doi. org/10.1093/aob/mcq007

[7] Seago, A.E., Brady, P., Vigneron, J.P. & Schultz, T.D., Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). JR Soc Int, 6, pp. S165– S184, 2009. doi: http://dx.doi.org/10.1098/rsif.2008.0354.focus

[8] Neville, A.C., Biology of the Arthropod Cuticle, Springer-Verlag: New York, 1975. doi: http:// dx.doi.org/10.1002/mmnd.4810230411

[9] Schultz, T.D. & Rankin, M.A., Developmental changes in the interference refl ectors and colorations of tiger beetles (Cicindela). J Exp Biol, 117, pp. 111–117, 1985.

[10] Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett, 58(20), pp. 2059–2062, 1987. doi: http://dx.doi.org/10.1103/physrevlett.58.2059

[11] John, S., Strong localisation of photons in certain disordered dielectric superlattices. Phys Rev Lett, 58(23), pp. 2486–2489, 1987. doi: http://dx.doi.org/10.1103/physrevlett.58.2486

[12] Joannopoulos, J.D., Johnson, S.G., Winn, J.N. & Meade, R.D., Photonic Crystals: Moulding the Flow of Light, 2nd edn., Princeton, NJ: Princeton University Press, 2008.

[13] Born, M. & Wolf, E., Principles of Optics, Oxford: Pergamon Press, 1980. doi: http://dx.doi. org/10.1126/science.131.3399.495

[14] Land, M.F., The physics and biology of animal refl ectors. Progress in Biophysics and Molecular Biology, 24, pp. 75–106, 1972. doi: http://dx.doi.org/10.1016/0079-6107(72)90004-1

[15] Jordan, T.M., Partridge, J.C. & Roberts, N.W., Non-polarizing broadband multilayer refl ectors in fi sh. Nature Photonics, 6(11), pp. 759–763, 2013. doi: http://dx.doi.org/10.1038/nphoton.2012.260

[16] Neville, A.C. & Caveney, S., Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals. Biol Rev, 44(4), pp. 531–562, 1969. doi: http://dx.doi.org/10.1111/j.1469185x.1969.tb00611.x

[17] Starkey, T. & Vukusic, P., Light manipulation principles in biological photonic systems. Nanophotonics, 2(4), pp. 289–307, 2013. doi: http://dx.doi.org/10.1515/nanoph-2013-0015

[18] Caveney, S., Cuticle refl ectivity and optical activity in scarab beetles: the role of uric acid. Proc R Soc Lond B, 178, pp. 205–225, 1971. doi: http://dx.doi.org/10.1098/rspb.1971.0062

[19] Jewell, S.A., Vukusic, P. & Roberts, N.W., Circularly polarized colour refl ection from helicoidal structures in the beetle Plusiotis boucardi. New J Phys, 9, pp. 1–10, 2007. doi: http://dx.doi. org/10.1088/13672630/9/4/099

[20] Sharma, V., Crne, M., Park, J.O. & Srinivasarao, M., Structural origin of circularly polarized iridescence in jeweled beetles. Science, 325, pp. 449–451, 2009. doi: http://dx.doi.org/10.1126/ science.1172051

[21] Arwin, H., Magnusson, R. & Landin, J., Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson. Phil Mag, 92(12), pp. 1583–1599, 2011. doi: http://dx.doi.org/10.1080/14786435.2011.648228

[22] Bouligand, Y., Twisted fi brous arrangements in biological materials and cholesteric mesophases. Tissue & Cell, 4(2), pp. 189–217, 1972. doi: http://dx.doi.org/10.1016/s00408166(72)80042-9

[23] Neville, A.C. & Luke, B.M., Form optical activity in crustacean cuticle. J Insect Physiol, 17, pp. 519–526, 1971. doi: http://dx.doi.org/10.1016/0022-1910(71)90030-8

[24] Mathger, L.M., Rapid colour changes in multilayer refl ecting stripes in the paradise whiptail, Pentapodus paradiseus. J Exp Biol, 206, pp. 3607–3613, 2003. doi: http://dx.doi.org/10.1242/ jeb.00599

[25] Giraud-Guille, M.M., Belamie, E. & Mosser, G., Organic and mineral networks in carapaces, bones and biomimetic materials. C R Palevol, 3, pp. 503–513, 2004. doi: http://dx.doi.org/10.1016/j.crpv.2004.07.004

[26] Moogan, T., Bacterial cell wall structre. Nature Biotech, 24(4), p. 421, 2006.

[27] Parker, A.R., 515 million years of structural colour. IOP: J Opt A: Pure Appl Opt, 2, pp. R15– R28, 2000. doi: http://dx.doi.org/10.1088/1464-4258/2/6/201

[28] Hegedus, R., Szel, G. & Horvath, G., Imaging polarimetry of the circularly polarizing cuticle of scarab beetles (Coleoptera: Rutelidae, Cetoniidae). Vision Research, 46(17), pp. 2786–2797, 2006. doi: http://dx.doi.org/10.1016/j.visres.2006.02.007

[29] Pouya, C., Stavenga, D.G. & Vukusic, P., Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnifi cus. Opt Exp, 19(12), pp. 11355–11364, 2011. doi: http://dx.doi.org/10.1364/oe.19.011355

[30] Vukusic, P., Hallam, B. & Noyes, J., Brilliant whiteness in ultrathin beetle scales. Science, 315, p. 348, 2007. doi: http://dx.doi.org/10.1126/science.1134666