Water is the Means, Medium and Message of Life

Water is the Means, Medium and Message of Life

Mae-Wan Ho

Institute of Science in Society, UK

Page: 
1-12
|
DOI: 
https://doi.org/10.2495/DNE-V9-N1-1-12
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
31 March 2014
| Citation

OPEN ACCESS

Abstract: 

Everyone knows water is essential for life, and generations of scientists have marvelled at the properties of water that make it especially fit for life. Yet this simple, ubiquitous chemical compound has remained completely mysterious until quite recently. New evidence is beginning to unlock the mysteries. Liquid water is quantum coherent even at ordinary temperatures and pressure. It associates with macromolecules and membranes in a liquid crystalline configuration that enables enzymes and nucleic acids to function as quantum molecular machines that transform and transfer energy at close to 100% efficiency. Liquid crystalline water at interfaces also provides the excitation energy that enables it to split into hydrogen and oxygen in photosynthesis, simultaneously generating electricity for intercommunication and for the redox chemistry that ultimately powers the entire biosphere. Water is the means, medium and message of life; ‘the rainbow within that mirrors the one in the sky’.

Keywords: 

liquid crystalline water, proton conduction, quantum coherence, quantum jazz, resonant energy transfer

  References

[1] Ho, M.W. & Lawrence, M., Interference colour vital imaging: a novel noninvasive technology. Microscope and Analysis, September, p. 26, 1993.

[2] Ho, M.W. & Saunders, P.T., Liquid crystalline mesophase in living organisms. Bioelectrodynamics and Biocommunication, eds. M.W. Ho, F.A. Popp & U. Warnke, World Scientifi c: Singapore, pp. 213–228, 1994. doi: http://dx.doi.org/10.1142/9789814503822_0008

[3] Ross, S., Newton, R.H., Zhou, Y.M., Haffegee, J., Ho, M.W., Bolton, J. & Knight, D., Quantitative image analysis of birefringent biological materials. Journal of Microscopy, 187, pp. 62–67, 1997. doi: http://dx.doi.org/10.1046/j.1365-2818.1997.2160776.x

[4] Ho, M.W., Zhou, Y.M., Haffegee, J., Watton, A., Musumeci, F., Privitera, G., Scordino, A. & Triglia, A., The liquid crystalline organism and biological water. Water in Cell Biology, eds. G. 

Pollack, I.L. Cameron & D.N. Wheatley, Springer: Dordrecht, pp. 219–251, 2006.

[5] Nucci, N.V., Pometun, M.S. & Wand, A.J., Site-resolved measurement of water-protein interaction by solution NMR. Natural Structural Molecular Biology, 18, pp. 245–250, 2010. doi: http://dx.doi.org/10.1038/nsmb.1955

[6] Kraut, D.A., Carroll, K.S. & Herschlag, D., Challenges in enzyme mechanism and energetics. Annual Review Biochemistry, 72, pp. 517–571, 2003. doi: http://dx.doi.org/10.1146/annurev. biochem.72.121801.161617

[7] Ho, M.W., Dancing with macromolecules. Science in Society, 48, pp. 11–15, 2010. doi: http:// dx.doi.org/10.1142/6928

[8] Ho, M.W., The Rainbow and the Worm, the Physics of Organisms, 3rd edn., World Scientifi c: Singapore, 2008.

[9] Glauber, R.J., The quantum theory of optical coherence. Physical Review, 130, pp. 2529–2539, 1963. doi: http://dx.doi.org/10.1103/PhysRev.130.2529

[10] Ho, M.W., Living Rainbow H2O, World Scientifi c and Imperial College Press: Singapore, 2012.

[11] Ho, M.W., Circular economy of organisms and sustainable systems. Systems, 1, pp. 30–49, 2013. doi: http://dx.doi.org/10.3390/systems1030030

[12] Albrecht, A., Some remarks on quantum coherence. Journal of Modern Optics, 41, p. 2457, 1994. doi: http://dx.doi.org/10.1080/09500349414552311

[13] Astronomers fi nd largest, most distant reservoir of water, Mission News, NASA, available at http://www.nasa.gov/topics/universe/features/universe20110722.html, 22 July 2011.

[14] Ho, M.W., World water supply in jeopardy. Science in Society, 56, pp. 38–43, 2012.

[15] Bakker, H.J. & Skinner J.L., Vibrational spectroscopy as a probe of structure and dynamics of water. Chemical Reviews, 110, pp. 1498–1517, 2010. doi: http://dx.doi.org/10.1021/cr9001879 [16] Chaplin, M., What is liquid water. Science in Society, 58, pp. 41–45, 2013.

[17] Vedamuthu, M., Singh, S. & Robinson, C.W., Properties of liquid water: origin of the density anomalies. Journal of Physical Chemistry, 98, pp. 2222–2230, 1994. doi: http://dx.doi.

org/10.1021/j100060a002

[18] Coats, C., Living Energies, Gateway Books: Bath, UK, 1996.

[19] Pauling, L., The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. Journal of American Chemical Society, 57, pp. 2680–2684, 1935. doi: http://dx.doi.org/10.1021/ja01315a102

[20] Isaacs, E.D., Shukla, A., Platzman, P.M., Hamann, D.R., Barbiellin, B. & Tulk, C.A., Covalency of the hydrogen bond in ice: a direct X-ray measurement. Physical Review Letters, 82, pp. 600–603, 1999. doi: http://dx.doi.org/10.1103/PhysRevLett.82.600

[21] Woutersen, S. & Bakker, H.J., Resonant intermolecular transfer of vibrational energy in liquid water. Nature, 402, pp. 507–509, 1999. doi: http://dx.doi.org/10.1038/990058

[22] Bakker, H.J. & Nienhuys, H.K., Delocalization of protons in liquid water. Science, 297, pp. 587–590, 2002. doi: http://dx.doi.org/10.1126/science.1073298

[23] Arani, R., Bono, I., Del Giudice, E. & Preparata, G., QED coherence and the thermodynamics of the water. International Journal of Modern Physics B, 9, pp. 1813–1841, 1995. doi: http:// dx.doi.org/10.1142/S0217979295000744

[24] Del Giudice, E., Old and new views on the structure of matter and the special case of living matter. Journal of Physics: Conference Series, 67, p. 012006, 2007.

[25] Del Giudice, E., Spinetti, P.R. & Tedeschi, A., Water dynamics at the root of metamorphosis in living organisms. Water, 2, pp. 566–586, 2010. doi: http://dx.doi.org/10.3390/w2030566

[26] Del Giudice, E. & Pulselli, R.M., Formation of dissipative structures in liquid water. International Journal of Design & Nature and Ecodynamics, 5, pp. 21–26, 2010. doi: http://dx.doi.

org/10.2495/DNE-V5-N1-21-26

[27] Ho, M.W., Quantum coherent water & life. Science in Society, 51, pp. 26–28, 2011.

[28] Ho, M.W., Two-states water explains all? Science in Society, 32, pp. 17–18, 2006.

[29] Huang, C., Wikfeldt, K.T., Tokushima, T. & Nilsson, A., The inhomogeneous structure of  water at ambient conditions. Proc Natl Acad Sci USA, 106, pp. 15214–15218, 2009. doi: http:// dx.doi.org/10.1073/pnas.0904743106

[30] Szent-Györgyi, A., Introduction to a Supramolecular Biology, Academic Press: New York, 1960.

[31] Zheng, J.M. & Pollack, G.H., Long-range forces extending from the polymer gel surfaces. 

Physical Review E, 68, pp. 314–318, 2003. doi: http://dx.doi.org/10.1103/PhysRevE.68.031408 [32] Ho, M.W., Water forms massive exclusion zones. Science in Society, 23, pp. 50–51, 2004.

[33] Pollack, G.H., Water, energy and life: fresh views from the water’s edge. International Journal of Design & Nature and Ecodynamics, 5, pp. 27–29, 2010. doi: http://dx.doi.org/10.2495/ DNE-V5-N1-27-29

[34] Pollack, G.H., The Fourth Phase of Water, Ebner & Sons Publishers: Seattle, Washington, 2013.

[35] Ho, M.W., Liquid crystalline water at the interface. Science in Society, 38, pp. 37–39, 2008.

[36] Riistama, S., Hummer, G., Puustinen, A., Dyer, R.B., Woodruff, W.H. & Sikatrom, M., Bound water in the proton translocation mechanism of the haem-copper oxidation. FEBS Letters, 414, pp. 275–289, 1997. doi: http://dx.doi.org/10.1016/S0014-5793(97)01003-X

[37] Ho, M.W., Positive electricity zaps through water chains. Science in Society, 28, pp. 49–50, 2005.

[38] Ye, H., Naguib, N. & Gogotsi, Y., TEM study of water in carbon nanotubes. JEOL News, 39, pp. 2–7, 2004.

[39] Naguib, N., Ye, H., Gogtsi, Y., Yazicioglu, A.G., Megaridis, C.M. & Yoshimura, M., Observation of water confi ned in nanometer channels of closed carbon nanotubes. Nano Letters, 4, pp. 2237–2243, 2004. doi: http://dx.doi.org/10.1021/nl0484907

[40] Ho, M.W., First sighting of structured water. Science in Society, 28, pp. 47–48, 2005.

[41] Fullerton, G.D. & Amurao, M.R., Evidence that collagen and tendon have monolayer water coverage in the native state. International Journal of Cell Biology, 30, pp. 56–65, 2006. doi: 

http://dx.doi.org/10.1016/j.cellbi.2005.09.008

[42] Ho, M.W., Collagen water structure revealed. Science in Society, 32, pp. 15–16, 2006.

[43] Bardelmeyer, G.H., Electrical conduction in hydrated collagen. I. Conductivity mechanisms. Biopolymers, 12, pp. 2289–2302, 1973. doi: http://dx.doi.org/10.1002/bip.1973.360121008

[44] Sasaki, N., Dielectric properties of slightly hydrated collagen: time-water content superposition analysis. Biopolymers, 23, pp. 1725–1734, 1984. doi: http://dx.doi.org/10.1002/bip.360230908

[45] Ho, M.W., Superconducting quantum coherent water in nanospace confi rmed. Science in  Society, 55, pp. 48–51, 2012.

[46] Dong, B., Gwee, L., Salas-de la Cruz, D., Winey, K.I. & Elabd, Y.A., Super proton conductive high-purity Nation nanofi bers. Nano Letters, 10, pp. 3785–3790, 2010. doi: http://dx.doi. org/10.1021/nl102581w

[47] Ho, M.W. & Knight, D.P., The acupuncture system and the liquid crystalline collagen fi bers of the connective tissues. American Journal of Chinese Medicine, 26, pp. 251–263, 1998. doi: http://dx.doi.org/10.1142/S0192415X98000294

[48] Ho, M.W., Super-conducting liquid crystalline water aligned with collagen fi bres in the fascia as acupuncture meridians of traditional Chinese medicine. Forum on Immunopathological  Diseases and Therapeutics, 3, pp. 221–236, 2012. doi: http://dx.doi.org/10.1615/ForumImmunDisTher.2013007869

[49] Lewis, J. & Raff, M., Molecular Biology of the Cell, Garland Science: New York, 2008.

[50] Ho, M.W., The real bioinformatics revolution. Science in Society, 33, pp. 42–45, 2007.

[51] Ho, M.W., Life is water electric. Science in Society, 57, pp. 43–47, 2013.

[52] Ling, G., Life at the Cell and below Cell Level, Pacifi c Press: California, USA, 2001.