Application of Gene Expression Data and Cellular Automata to Predict Disease Progress in a Cardiac Hypertrophy Model

Application of Gene Expression Data and Cellular Automata to Predict Disease Progress in a Cardiac Hypertrophy Model

A.K. Macpherson L.M. Crosby P.A. Macpherson

Institute for Biomedical Engineering & Mathematical Biology, Lehigh University Bethlehem, PA, USA.

GenExpressions, Inc, Raleigh, NC, USA.

Department of Applied Technology, Rogers State University, Claremore, OK, USA.

Page: 
1-9
|
DOI: 
https://doi.org/10.2495/DNE-V6-N1-1-9
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
9 March 2011
| Citation

OPEN ACCESS

Abstract: 

The discernment of gene expression changes at the molecular level presents great opportunities to conquer human disease; therefore it is important that these data find use in clinical practice. Here an example is given of how gene expression data may be used in the prediction of the severity of heart disease leading to cardiac hyper-trophy (enlargement of heart muscle). Using a mathematical modeling approach based on cellular automata and available temporal expression gene profiles, the rate of development of hypertrophy in cardiomyocytes was studied. In the model, during 5% of the time transcriptional activation of genes resulted in significant increases in heart muscle mass. For hypertrophy originating in one or a few cells, the spread of the lesion occurs as a result of the intercellular transmission of information from the ‘seed’ cells to neighbors. Model output indicated that signal transmission time correlated with net increases in cardiomyocyte mass. There was a threshold signal time of 12 minutes, below which net mass increase was negligible. This implies that certain persons with a tendency to short transmission times would probably not suffer heart damage even while experiencing limited heart muscle growth, in the event of hemodynamic overload. We hypothesize that anti-hypertrophic drugs actually reduce the transcellular signal transmission time, resulting in reduced incidence/severity of heart disease.

Keywords: 

angiotensin II, α-actin, anti-hypertrophic drug action, cellular automata, gene expression, left ventricular hypertrophy, left ventricular mass increase, MHC-b, myosin light chain, TGFb

  References

[1] Ruwhof, C. & van der Laarse, A., Mechanical stress-induced cardiac hypertrophy mechanisms and signal transduction pathways. Cardiovascular Research, 47, pp. 23–37, 2000. doi:10.1016/ S0008-6363(00)00076-6

[2] Alberts, B., Johnson, A., Lewis, J., Raff M. & Walter, P., Molecular Biology of the Cell, 4th edn, Garland Science/Taylor & Francis Group: London, 2000.

[3] Goldblatt, H., Lynch, J., Hanzel, R.F. & Summerville, W.W., Studies on experimental hyper-tension: I The production of persistent elevation of systolic blood pressure by means of renal ischemia. J. Exp. Med., 59, pp. 347–349, 1934. doi:10.1084/jem.59.3.347

[4] Dzau, V.J. & Gibbons, G.H., Autocrine and paracrine mechanisms of vascular myocytes in systemic hypertension. Am. J. Cardiol., 60, pp. 991–1031, 1987. doi:10.1016/00029149(87)90468-1

[5] LeGrice, I.J., Slaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B. & Hunter, P.J., Laminar struc-ture of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol., 269(2 Pt 2), pp. H571–H582, 1995.

[6] Marshall, J.M., The heart. Medical Physiology, 13th edn, ed. V.B. Mountcastle, Mosby: New York, 1974.

[7] Parker, T.G., Molecular biology of myocardial hypertrophy and failure: gene expression and trophic signaling. New Horizons, 3, pp. 288–300, 1995.

[8] Schwartz, K., Chassagnw, C. & Boheler, K.R., The molecular biology of heart failure, JACC, 

22(4 Suppl A), pp. 30A–33A, 1993. doi:10.1016/0735-1097(93)90459-E

[9] Kim, S. & Iwao, H., Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacological Reviews, 52(2), pp. 11–34, 2000.

[10] Marian, A.J. & Roberts, R., The molecular genetic basis for hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol., 33, pp. 655–670, 2001. doi:10.1006/jmcc.2001.1340

[11] Wolfram, S., A New Kind of Science, Wolfram Media, Inc.: Champagne, Illinois, 2002.

[12] Lim, D.-S., Roberts, R. & Marian, A.J., Expression profiling of cardiac genes in human hypertrophic cardiomyopathy: insight into the pathogenesis of phenotypes. JACC, 38(4), pp. 1175–1180, 2001. doi:10.1016/S0735-1097(01)01509-1

[13] Poundstone, W., The Recursive Universe: Cosmic Complexity and the Limits of Scientific Knowledge, Oxford University Press: Oxford, 1987.

[14] Rangel, C., Wild, D.L. & Falciani, F., Modelling biological responses using gene expression profiling and linear dynamical systems. Proceedings of the 2nd International Conference on Systems Biology, OmniPress: Madison, WI, pp. 248–256, 2002.

[15] Grewal, M.S. & Andrews, A.P., Kalman Filtering, Theory and Practice Using MATLAB, John Wiley: New York, 2001.

[16] Ghahramani, Z. & Hintin, G.E., Parameter Estimation for Linear Dynamical Systems, University of Toronto Technical Report, CRG-TR-96-2, 1996, http://www.gatsby.ucl.ac.uk/~zoubin [2003].

[17] Macpherson, A.K. & Neti, S., The effect of angiotensin II on heart blood flow and hypertension. Advances Fluid Mechanics IV, eds M. Rahman, R. Verhoeven, C.A. Brebbia, WIT Press: Southampton, pp. 1–12, 2002.

[18] Schuijt, M.P., de Vries, R., Saxena, P.R., Schalekamp, M.A. & Danser, A.H., Vasoconstriction is determined by interstitial rather than circulating angiotensin II. Br. J. Pharmacol., 135(1), pp. 275–283, 2002. doi:10.1038/sj.bjp.0704452

[19] Schuijt, M.P., van Kats, J.P., de Zeeuw, S., Dunker, D.J., Verdouw, P.D., Schalekamp, M.A.D.H. & Jan Danser, A.H., Cardiac interstitial fluid levels of angiotensin I and II in the Pig. Journal of 

Hypertension, 17(12 Part 2), pp. 1885–1891, 1999. doi:10.1097/00004872-199917121-00017

[20] Zisman, L.S., Asano, K., Dutcher, D.L., Ferdensi, A., Robertson, A.D., Jenkin, M., Bush, E.W., Bohlmeyer, T., Perryman, M.B. & Britow, M.R., Differential regulation of cardiac angiotensin converting enzyme binding sites and AT1 receptor density in the failing human heart.  Circulation, 98(17), pp. 1735–1741, 1998.

[21] Kajstura, J., Zhang, X., Liu, Y., Szoke, E., Cheng, W., Olivettis, G., Hintze, T.H. & Anversa, P., The cellular basis of pacing-induced dilated cardiomyopathy. Circulation, 92, pp. 2306–2317, 1995.

[22] Morré, D.J., Chueh, P.-J., Pletcher, J., Tang, X., Wu, L.-Y. & Morré, D.M., Biochemical basis for the biological clock. Biochemistry, 41(40), pp. 11941–11945, 2002. doi:10.1021/bi020392h

[23] Hodgkin, A.L. & Huxley, A.F., A quantitative description of membrane current and its  application to conductance and excitation in nerve. J. Physiol., 117, pp. 500–554, 1952.

[24] Streeter, D.D., Powers, W.E., Ross, M.A. & Torrent-Guasp, F., Three-dimensional fiber orientation in the mammalian left ventricular wall.   Cardiovascular System Dynamics, eds J. Baan, A. Noordergraaf & J. Raines, MIT Press: Cambridge, MA, pp. 73–84, 1978.