A Comparison of Numerical Modelling Strategies in Contact Detonation Scenarios with Concrete Targets

A Comparison of Numerical Modelling Strategies in Contact Detonation Scenarios with Concrete Targets

B. Esteban N. Gebbeken

Institute of Engineering Mechanics and Structural Analysis, University of the Bundeswehr Munich, Germany

Page: 
231-246
|
DOI: 
https://doi.org/10.2495/CMEM-V4-N3-231-246
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

With continuous advancements in computational capacity, it has become possible and feasible to numerically model very complex physical phenomena, for instance, high dynamic loads. Hydrocodes or, in other words, “wave propagation codes” were conceived to model such scenarios. Several numerical discretisations are available in these programs, which require the problem at hand to be modelled in distinct ways and which yield different results. In the present contribution, three different numerical strategies are compared. These employ a coupling of the Euler and the Lagrange scheme, the Euler scheme by itself as well as the Smooth Particle Hydrodynamics (SPH) scheme. Their application in the hydrocode ANSYS Autodyn to a contact detonation scenario with a concrete target and with a breakthrough is described as an example of a high dynamic load. This scenario is of special interest since it is a possible threat to critical infrastructure. The numerical results are compared and contrasted; individual strengths and weaknesses of the three numerical modelling strategies are identified also by validating their numerical results with an experimental one. To the authors’ knowledge, such comparison has not yet been done for contact detonation. It is concluded that the SPH method is the preferred strategy to model the considered scenario.

Keywords: 

ANSYS Autodyn, concrete, contact detonation, damage, high dynamic loads, numerical modelling strategies, numerical simulations

  References

[1] Bischoff, P.H. & Perry, S.H., Compressive behaviour of concrete at high strain-rates. Materials and Structures, 24, pp. 425–450, 1991. http://dx.doi.org/10.1007/BF02472016

[2] Meyers, M.A., Dynamic Behaviour of Materials, Wiley-Interscience: New York, 1994. http://dx.doi.org/10.1002/9780470172278

[3] Gebbeken, N. & Ruppert, M., On the safety and reliability of hydrocode simulations. International Journal for Numerical Methods in Engineering, 46, pp. 839–851, 1999. http://dx.doi.org/10.1002/(SICI)1097-0207(19991030)46:6<839::AID-NME728>3.0.CO;2-R

[4] Riedel, W. & Forquin, P., Modelling the response of concrete structures to dynamic loading, (Chapter 5). Understanding the Tensile Properties of Concrete, ed. J. Weerheijm, Woodhead Publishing, Oxford, 2013.

[5] Zukas, J.A., Introduction to Hydrocodes, Elsevier: The Netherlands, 2004.

[6] Courant, R., Friedrichs, K. & Lewy, H., Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100, pp. 32–74, 1928. http://dx.doi.org/10.1007/BF01448839

[7] ANSYS Autodyn, AUTODYN Explicit Software for Nonlinear Dynamics, User’s Manual, Release 14.5, 2013.

[8] American Society of Mechanical Engineers (ASME) Standards Committee on Verifica- tion and Validation in Computational Solid Mechanics (PTC 60 / V&V 10), Guide for Verification and Validation in Computational Solid Mechanics, ASME, 2006.

[9] Katayama, M., Aizawa, T. & Obata, H., Lagrange, ALE and Euler Processors in AUTO-DYN-2D: Evaluation of Reliability through Benchmark Problems, IMPACT III, Post Seminar of 10th International Conference on Structural Mechanics in Reactor Technology, 1989.

[10] Birnbaum, N.K. & Cowler, M.S., Comparison of Euler, Lagrange, ALE and coupled Euler Lagrange calculations in terminal ballistics. Proceeding of the 11th International Symposium on Ballistics, Vol. 2: Warhead mechanisms, terminal ballistics, 1989.

[11] Hiermaier, S., Numerische Simulation von Impaktvorgängen mit einer netzfreien Lagrangemethode (Smooth Particle Hydrodynamics), Doctoral Thesis (in German), Institut für Mechanik und Statik, Universität der Bundeswehr München, 1996.

[12] Clegg, R.A., Sheridan, J., Hayhurst, C.J. & Francis, N.J., The application of SPH techniques in AUTODYN-2D to kinetic energy penetrator impacts on multi-layered soil and concrete targets. Proceeding of the 8th International Symposium on Interaction of the Effects of Munitions with Structures, 1997.

[13] Meuric, O.F.J., Sheridan, J., O´Caroll, C., Clegg, R.A. & Hayhurst, C.J., Numerical prediction of penetration into reinforced concrete using a combined grid based and meshless lagrangian approach. Proceeding of the 10th International Symposium on Interaction of the Effects of Munitions with Structures, 2001.

[14] Leppänen, J., Concrete Structures Subjected to Fragment Impacts, Doctoral Thesis, Chalmers University of Technology, Göteborg, Sweden, 2004.

[15] Gebbeken, N., Teich, M. & Linse, T., Numerical modelling of high speed impact and penetration into concrete structures. Proceeding of the 7th International Conference on Shock & Impact Loads on Structures, eds. F.L. Huang, Q.M. Li & T.S. Lok, CI-Premier Pte Ltd, pp. 241–250, 2007.

[16] Gebbeken, N. & Ruppert, M., Ein Beitrag zur Simulation von Baustrukturen unter hochdynamischen Kurzzeitbeanspruchungen. Bauingenieur, 11, pp. 461–470, 1999.

[17] Holmquist, T.J. & Johnson, G.R., A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures. Proceeding of the 14th International Symposium on Ballistics, pp. 591–600, 1993.

[18] Malvar, L.J., Crawford, J.E. & Wesevich, J.W., A plasticity concrete material model for Dyna3D. International Journal of Impact Engineering, 19, pp. 847–873, 1997. http://dx.doi.org/10.1016/S0734-743X(97)00023-7

[19] Riedel, W., Thoma, K., Hiermaier, S. & Schmolinske, E., Penetration of reinforced concrete by BETA-B-500, numerical analysis using a new macroscopic concrete model for hydrocodes. Proceeding of the 9th International Symposium on the Interaction of the Effects of Munitions with Structures, pp. 318–325, 1999.

[20] Itho, M., Katayama, M., Mitake, S., Niwa, N., Beppu, M. & Ishikawa, N., Numerical study on impulsive local damage of reinforced concrete structures by a sophisticated constitutive and failure model. Proceeding of the International Conference on Structures Under Shock and Impact, pp. 569–578, 2000.

[21] Gebbeken, N. & Ruppert, M., A new material model for concrete in high-dynamic hydrocode simulations. Archive of Applied Mechanics, 70, pp. 463–478, 2000. http://dx.doi.org/10.1007/s004190000079

[22] Hartmann, T., Pietzsch, A. & Gebbeken, N., A hydrocode material model for concrete. International Journal of Protective Structures, 1, pp. 443–468, 2010. http://dx.doi.org/10.1260/2041-4196.1.4.443

[23] Riedel, W., Beton unter dynamischen Lasten, Meso- und makromechanische Modelle und ihre Parameter, Doctoral Thesis (in German), Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institute EMI, Fraunhofer IRB Verlag, 2004.

[24] Riedel, W., Kawai, N. & Kondo, K., Numerical assessment for impact strength measurements in concrete materials. International Journal of Impact Engineering, 36, pp. 283–293, 2009. http://dx.doi.org/10.1016/j.ijimpeng.2007.12.012

[25] Schuler, H. & Hansson, H., Fracture behaviour of high performance concrete (HPC) investigated with a Hopkinson-Bar. Journal de Physique IV France, 134, pp. 1145–1151, 2006. http://dx.doi.org/10.1051/jp4:2006134175

[26] Hansson, H. & Malm, R., Non-linear finite element analysis of deep penetration in unreinforced and reinforced concrete. Nordic Concrete Research, 44, pp. 87–107, 2011.

[27] Landmann, F., Dokumentation der Parameteruntersuchungen des Schädigungsverhaltens von Stahlbetonplatten unter Kontaktdetonationen, Technical report, Wehrtechnische Dienststelle für Schutz- und Sondertechnik, Oberjettenberg, 2001.

[28] Kraus, D., Roetzer, J. & Thoma, K., Effect of high explosive detonations on concrete structures. Nuclear Engineering and Design, 150, pp. 309–314, 1994. http://dx.doi.org/10.1016/0029-5493(94)90149-X

[29] Zhou, X.Q. & Hao, H., Mesoscale modelling and analysis of damage and fragmentation of concrete slab under contact detonation. International Journal of Impact Engineering, 36, pp. 1315–1326, 2009. http://dx.doi.org/10.1016/j.ijimpeng.2009.02.010

[30] Riedel, W., Mayrhofer, C., Thoma, K. & Stolz, A., Engineering and numerical tools for explosion protection of reinforced concrete. International Journal of Protective Structures, 1, pp. 85–102, 2010. http://dx.doi.org/10.1260/2041-4196.1.1.85

[31] Hartmann, T., Pietzsch, A. & Gebbeken, N., A Hydrocode material model for concrete. International Journal of Protective Structures, 1(4), pp. 443–468, 2010. http://dx.doi.org/10.1260/2041-4196.1.4.443

[32] Luccioni, B.M., Araoz, G.F. & Labanda, N.A., Defining erosion limit for concrete. International Journal of Protective Structures, 4, pp. 315–340, 2013. http://dx.doi.org/10.1260/2041-4196.4.3.315

[33] Liu, G.R. & Liu, M.B., Smoothed Particle Hydrodynamics - A Meshfree Particle Method, World Scientific: Singapore, 2003. http://dx.doi.org/10.1142/9789812564405

[34] Feng, D.L., Liu, M.B., Li, H.Q. & Liu, G.R., Smoothed particle hydrodynamics modeling of linear shaped charge with jet formation and penetration effects. Computers & Fluids, 86, pp. 77–85, 2013. http://dx.doi.org/10.1016/j.compfluid.2013.06.033

[35] Gebbeken, N. & Greulich, S., Verhalten von Baustrukturen aus Stahlbeton unter Kontaktdetonationen: Simulationsmodell für bewehrten Beton, Technical report, University of the Bundeswehr Munich, 2001.

[36] Margraf, J., Modeling the Structural Response from a Propagating High Explosive Using Smooth Particle Hydrodynamics, Lawrence Livermore National Laboratory, Report LLNL-TR-561181, 2012.

[37] Leppänen, J., Concrete subjected to projectile and fragment impacts: modelling of crack softening and strain rate dependency in tension. International Journal of Impact Engineering, 32, pp. 1828–1841, 2006. http://dx.doi.org/10.1016/j.ijimpeng.2005.06.005

[38] Hansson, H., Warhead penetration in concrete protective structures, Licentiate Thesis, School of Architecture and the Built Environment, Stockholm: Sweden, 2011.