Modelling and Simulation of Standalone Solar Power Systems

Modelling and Simulation of Standalone Solar Power Systems

A. M. Dizqah A. Maheri K. Busawon A. Kamjoo

Faculty of Engineering and Environment, Northumbria University, Newcastle, UK.

Page: 
107-125
|
DOI: 
https://doi.org/10.2495/CMEM-V2-N1-107-125
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

In the design of the controllers of hybrid renewable energy system (HRES), the system dynamics and constraints need to be modelled and simulated in conjunction with the controller itself. This paper presents mathematical and equivalent electrical models taking into consideration all system dynamics and constraints for the solar branch of HRES. This branch consists of photovoltaic (PV) array, load and battery connected through a boost-type DC–DC converter. The probabilistic behaviour of the solar irradiance, which intrinsically includes the effect of cloud shading, and the dynamics of the battery are also modelled. The platform developed for dynamic simulation of the solar branch of HRES can be employed for design of DC–DC converter controllers as well as design of energy management systems.

Keywords: 

battery, boost-type DC–DC converter, electrical load, energy management system, HRES, hybrid renewable energy system, photovoltaic, PV.

  References

[1] Altas, I.H. & Sharaf, A.M., A photovoltaic array simulation model for Matlab- Simulink GUI environment. In Proc. IEEE Int. Conf. Clean Elect. Power (ICCEP) IEEE, pp. 341–345, 2007.

[2] Buresch, M., Photovoltaic Energy Systems Design and Installation, McGraw-Hill: New York, 1983.

[3] Villalva, M.G., Gazoli, J.R. & Filho, E.R., Comprehensive approach to modelling and simulation of photovoltaic arrays. IEEE Transaction on Power Electronics, 24, pp. 1198–1208, 2009. doi: http://dx.doi.org/10.1109/TPEL.2009.2013862

[4] Ishaque, K., Salam, Z. & Taheri, H., Accurate MATLAB simulink PV system simulator based on a two-diode model. Journal Power Electronics, 11, pp. 179–187, 2011. doi: http://dx.doi.org/10.6113/JPE.2011.11.2.179

[5] Guasch, D. & Silvestre, S., Dynamic battery model for photovoltaic applications. Journal Progress in Photovoltaics: Research and Applications, 11, pp. 193–206, 2003. doi: http://dx.doi.org/10.1002/pip.480

[6] Ashari, M. & Nayar, C.V., An optimum dispatch strategy using set points for a photovoltaic-diesel-battery hybrid power system. Journal Solar Energy, 66, pp. 1–9, 1999. doi: http://dx.doi.org/10.1016/S0038-092X(99)00016-X

[7] Karaki, S.H., Chedid, R.B. & Ramadan, R., Probabilistic performance assessment of autonomous solar-wind energy conversion systems. IEEE Transaction on Energy Conversion, 14(3), pp. 766–772, 1999. doi: http://dx.doi.org/10.1109/60.790949

[8] Sulaiman, M.Y., Oo, W.M.H., Wahab, M.A. & Zakaria, A., Application of beta distribution model to Malaysian sunshine data. Journal Renewable Energy, 18, pp. 573–579, 1999. doi: http://dx.doi.org/10.1016/S0960-1481(99)00002-6

[9] Dizqah, A.M., Maheri, A. & Busawon, K., An assessment of solar irradiance stochastic model for the UK. In 2nd International Symposium on Environment Friendly Energies and Applications (EFEA) Newcastle Upon Tyne, 2012.

[10] Deshmukh, M.K. & Deshmukh, S.S., Modelling of hybrid renewable energy systems. Journal Renewable & Sustainable Energy Reviews, 12, pp. 235–249, 2008. doi: http://dx.doi.org/10.1016/j.rser.2006.07.011

[11] Martinez, J., A state space model for the dynamic operation representation of small-scale wind-photovoltaic hybrid systems. Journal Renewable Energy, 35, pp. 1159–1168, 2010. doi: http://dx.doi.org/10.1016/j.renene.2009.11.039

[12] Chatterjee, A., Keyhani, A. & Kapoor, D., Identifi cation of photovoltaics source models. IEEE Transactions on Energy Conversion, 26(3), pp. 883–889, 2011. doi: http://dx.doi.org/10.1109/TEC.2011.2159268

[13] Alam, M.S. & Alounai, A.T., Dynamic modeling of photovoltaic module for real-time maximum power tracking. Journal of Renewable and Sustainable Energy, 2, pp. 1–16, 2010. doi: http://dx.doi.org/10.1063/1.3435338

[14] Beaudin, M., Zareipour, H., Schellenberglabe, A. & Rosehart, W., Energy storage for mitigating the variability of renewable electricity sources: an updated review. Journal Energy for Sustainable Development, 14, pp. 302–314, 2010. doi: http://dx.doi.org/10.1016/j.esd.2010.09.007

[15] Divya, K.C. & Ostergaard, J., Battery energy storage technology for power systems – an overview. Journal Electric Power Systems Research, 79, pp. 511–520, 2009. doi: http://dx.doi.org/10.1016/j.epsr.2008.09.017

[16] Su, J.H., Chen, J.J. & Wu, D.S., Learning feedback controller design of switching converters via MATLAB/SIMULINK. IEEE Trans on Education, 45, pp. 307–315, 2002. doi: http://dx.doi.org/10.1109/TE.2002.803403

[17] Middledbrook, R.D. & Cuk, S., A general unifi ed approach to modelling switchingconverter power stages. In Proc. of IEEE Power Electronics Specialist Conference, 1976. 

[18] Mariethoz, S., Almer, S., Baja, M., Beccuti, A.G., Patino, D., et al., Comparison of hybrid control techniques for buck and boost DC–DC converters. IEEE Trans on Control Systems Technology, 18, pp. 1126–1145, 2010. doi: http://dx.doi.org/10.1109/TCST.2009.2035306

[19] Lopez, R.D., Agustin, J.L.B., Uson, L.C. & Aguarta, I.A., Demand side management in hybrid systems with hydrogen storage in several demand. In 17th World Hydrogen Energy Conference Brisbane, 2008.

[20] BADC, British Atmosphere Data Centre (BADC), 2011.