Estimation of the uncertainties of a method of measuring vibration deformations by 3D vision

Estimation of the uncertainties of a method of measuring vibration deformations by 3D vision

Thomas Durand-Texte  Elisabeth Simonetto  Stéphane Durand  Manuel Melon  Marie-Hélène Moulet 

Laboratoire d’Acoustique de l’Universté du Maine - UMR CNRS 6613, 72085 Le Mans cedex 09, France

Laboratoire Géomatique et Foncier, CNAM, 72000 Le Mans, France

Centre de Transfert de technologie du Mans,72000 Le Mans, France

Corresponding Author Email: 
thomas.durand-texte@univ-lemans.fr
Page: 
71-95
|
DOI: 
https://doi.org/10.3166/i2m.16.1-4.71-95
Received: 
| |
Accepted: 
| | Citation
Abstract: 

This article aims to explain the principle  of a vibration  measurement method based on photogrammetry, and to determine the corresponding uncertainty. The system used is specific : one ultra-fast  camera and a set of mirrors generating two virtual cameras. Numerical simula- tions were carried out in order to quantify the measurement uncertainties and to determine the optimal configuration of the system

Keywords: 

Photogrammetry ; vibrations ; ultra-fast camera ; image processing

1. Introduction
2. Méthode
3. Résultats
4. Conclusion
Remerciements

Ce projet est soutenu par « Le Mans Acoustique » et financé par la région « Pays de la Loire » et le « Fonds européen de développement économique et régional »

  References

Bai M., Lin J.-H. (2007). Source identification  system based on the time-domain  neareld equi- valence source imaging: Fundamental theory and implementation.  J. Sound Vib., vol. 307, no 1-2, p. 202-225.

Baqersad J., Poozesh P., Niezrecki  C., Avitabile P. (2017, mars). Photogrammetry  and optical methods in structural dynamics - A review. Mechanical  Systems and Signal Processing, vol. 86, p. 17-34.

Berry A., Robin O. (2016). Identification  des excitations sur des panneaux par la mesure de leur réponse vibratoire  et la méthode des champs virtuels.  In CFA 2016. Le Mans, France.

Blender Foundation. (2015, nov).  Blender 2.76b - a 3d modelling and rendering package. (http://www.blender.org)

Bouguet J. Y. (2008). Camera calibration toolbox for matlab. Consulté sur http://www.vision.caltech.edu/bouguetj/calib\_doc/.

Bradski G. (2000). Open Computer Vision, OpenCV. Dr. Dobb’s Journal of Software Tools.

Durand-Texte T., Simonetto E., Durand S., Picart P., Moulet M.-H., Melon M. (2016). Mesurede déformations vibratoires par vision 3d. In CFA 2016. Le Mans, France.

Ewins D. (2000). Modal testing: theory, practice, and application. Research Studies Press. Fitzgibbon A., Pilu M., Fisher R. B. (1999, mai). Direct least square fitting of ellipses.  IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no 5, p. 476–480.

Graves S. S., Burner A. W., Edwards  J. W., Schuster D. M.  (2003). Dynamic Deformation Measurements of an Aeroelastic Semispan Model. Journal of Aircraft, vol. 40, no 5, p. 977–984.

Hald J. (2001). Time domain acoustical holography and its applications.  Sound and vibration, vol. 35, no 2, p. 16-25.

Hartley R. I., Zisserman A. (2004). Multiple view geometry in computer vision (Second éd.). Cambridge University Press, ISBN: 0521540518.

Inaba M., Hara T., Inoue H.  (1993, July).  A stereo viewer based on a single  camera with view-control  mechanisms. In Proceedings of 1993 IEEE/RSJ international  conference on intelligent robots and systems, IROS 1993, p. 1857–1865.  Tokyo,  Japan.

Lobreau S., Bavu E., Melon M. (2015, Fev). Hemispherical double-layer time reversal imaging in reverberant and noisy environments at audible frequencies. The Journal of the Acoustical Society of America, vol. 137-2, p. 785-796.

Nene S. A., Nayar S. K. (1998). Stereo with mirrors. In ICCV , p. 1087–1094.  Consulté sur http://dx.doi.org/10.1109/ICCV.1998.710852

Olaszek  P.   (1999). Investigation of the dynamic characteristic of bridge structures using a computer vision method. Measurement, vol. 25, no 3, p. 227–236.

Orteu J.-J. (2009, nov). Mesure de formes et de déformations par stéréo-corrélation d’images : applications  en mécanique expérimentale des solides. In S. F. d’Optique (Ed.), Méthodes et techniques optiques pour l’industrie, p. 186-218.

Pezerat C., Guyader J. (2000).  Force analysis technique: reconstruction  of force distribution on plates. Acta Acustica united with Acustica, vol. 86, no 2, p. 322–332.

Poittevin  J., Picart P., Faure C., Gautier F., Pézerat C.  (2015, Apr).  Multi-point vibrometer based on high-speed digital in-line holography.  Appl. Opt., vol. 54, no 11, p. 3185–3196. Consulté sur http://ao.osa.org/abstract.cfm?URI=ao-54-11-3185

Stasicki B., Boden F.  (2014). In-flight measurements of aircraft propellers deformation by means of an autarkic fast rotating imaging system. International Conference on Experi- mental Mechanic, vol. 9302.

Suzuki S., Abe K. (1985, avril).  Topological structural analysis of digitized binary images by border following. j-CVGIP, vol. 30, no 1, p. 32–46.

Thomas J.-H., Grulier V., Paillasseur P., Pascal J.-C., Le Roux J.-C. (2010, Dec). Real-time near-field acoustic holography for continuously visualizing nonstationary acoustic fields. J. Acoust. Soc. Am., vol. 3554-67.

Wang, Li X., Zhang Y.  (2008). Analysis and optimization of the stereo-system with a four- mirror adapter. Journal of the European Optical Society - Rapid publications, vol. 3, no 0.

Wang W., Mottershead  J. E., Ihle A., Siebert T., Reinhard Schubach H.  (2011). Finite ele- ment model updating from full-field vibration measurement using digital  image correlation. Journal of Sound and Vibration,  vol. 330, no 8, p. 1599–1620.

White T. G., Patten J. R. W., Wan K.-H., Pullen A. D., Chapman D. J., Eakins D. E. (2017). A single camera three-dimensional digital image correlation system for the study of adiabatic shear bands. Strain, vol. 53, no 3.

Yu L., Pan B. (2017). Single-camera high-speed stereo-digital image correlation for full-field vibration measurement. Mechanical Systems and Signal Processing,  vol. 94, no Complete, p. 374-383.

Zhang Z.  (2000, novembre).  A flexible new technique for camera calibration. IEEE Trans.

Pattern Anal. Mach. Intell., vol. 22, no 11, p. 1330–1334