Development of a new method of corrosion monitoring by wireless sensors based on RFID technology

Development of a new method of corrosion monitoring by wireless sensors based on RFID technology

Rania Khalifeh Benoit Lescop François Gallée Gaël Le Roux Stéphane Rioual 

Lab-STICC UMR 6285, Université de Bretagne Occidentale

6 av. Le Gorgeu, 29285 Brest Cedex, France

Lab-STICC UMR 6285, Telecom Bretagne

Technopole Brest-Iroise, CS 83818, 29238 Brest Cedex, France

Corresponding Author Email:,
31 December 2016
| Citation

Wireless and fully energetically passive corrosion sensors inspired from the chipless Radiofrequency Identification (RFID) technology are presented for the monitoring of degradation of materials. The device consists of a reader and a remote passive sensor. The study presents two radiofrequency corrosion sensitive resonators which can be integrated in such device. The first is sensitive to corrosion potential Ecorr with respect to a reference electrode. The radiofrequency characterization of this resonator demonstrates unambiguously the sensitivity of the method to the passivation of steel in sea water and to the degradation of organic coatings. In a second part, the sensing element is modified to provide information on electrical potential and current.


corrosion, corrosion potential, passive wireless sensors, radiofrequency, RFID technology.

1. Introduction
2. Méthode et instrumentation
3. Exemples : passivation de l’acier et dégradation de peinture
4. Adaptation à la mesure de courants
5. Conclusion

Un des auteurs (RK) remercie la région Bretagne pour la contribution financière apportée à sa thèse.


Dante J.F., Steiner A., Friedersdorf F. (2008). RF. System for corrosivity monitoring. NACE international, corrosion conference. p. 8204.

Davis G.D., Dunn R.C., Ross R.A. (2010). Wireless battery powered coated health monitor. NACE international, corrosion conference p. 10091.

Landoulsi J., Elkirat K., Richard C., Feron D., Pulvin S. (2008). Enzymatic Approach in Microbial-Influenced Corrosion: A review Based on Stainless Steels in Natural Waters. Environmental Science & Technology, vol. 42. p. 2233-2242.

Le Bozec N., Compère C., L’Her M., Laouenan A., Costa D., Marcus P. (2001). Influence of stainless steel surface treatment on the oxygen reduction reaction in seawater. Corrosion Science. vol. 43. p. 765-786.

Materer N.F., Apblett A.W. (2010). Passive wireless corrosion sensor. US 2010. Patent 20090058427.

Preradovic S., Karmakar N.C. (2009). Design of fully printable planar chipless RFID transponder with 35-bit data capacity. European Microwave Conference p. 013-016.

Rammal J., Delhote N., Tantot O., Verdeyme S., Gallee F., Rioual S. (2014). New passive ceramic sensor for corrosion detection. Proceedings of the 44rd European Microwave Conference. European Microwave Conference, IEEE. p.167-170.

SeonYeob L., Young-Geun K., Sungwon J., Hong-Seok S., Seong-Min L. (2007). Application of steel thin film electrical resistance sensor for in situ corrosion monitoring. Sensors and Actuators B. vol. 120. p. 368-377.

Srinivasan R.n, Carkhuff B.G., Phillips T.E., Saffarian H., Davis G.D., Raghu S. (2005). Miniature Wireless Full Spectrum EIS Corrosion Sensor. Tri-Services conference on corrosion. Orlando, Florida.

Yasri M., Gallee F., Lescop B., Diler E., Thierry D., Rioual S. (2016). Fundamental basis of electromagnetic wave propagation in a zinc microstrip lines during its corrosion. Sensors and Actuators B: Chem. vol. 223. p. 352-358.

Yasri M., Gallee F., Lescop B., Diler E., Thierry D., Rioual S. (2014). Passive Wireless Sensor for Atmospheric Corrosion Monitoring. Proceedings of the 8th European conference on Antennas and Propagation. EUCAP, IEEE. p. 2945-2949. 

Wilson R., Muscat R.F. (2011). Novel thin wire paint and sealant degradation sensor. Sensors and Actuators A: Physical. vol. 169. p. 301-307.