Reconstruction 2D surface cracks from Eddy-current images using a semi-analysic model

Reconstruction 2D surface cracks from Eddy-current images using a semi-analysic model

Éric Vourc’h Thierry Bore Caifang Cai Romain Soulat 

SATIE (ENS Cachan/CNRS/Paris-Saclay University), 61 av. du Président Wilson, 94230 Cachan, France

School of Civil Engineering, University of Queensland, St Lucia, Australia

L2S, CentraleSupelec-CNRS-Univ. Paris-Sud, 3 rue Joliot-Curie, 91192 Gif sur Yvette, France

LSV (ENS Cachan/CNRS/Paris-Saclay University), 61 av. du Président Wilson, 94230 Cachan, France

Corresponding Author Email: 
Eric.vourch@satie.ens-cachan.fr
Page: 
129-138
|
DOI: 
https://doi.org/10.3166/I2M.15.3-4.129-138
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
31 December 2016
| Citation
Abstract: 

We propose a method for reconstructing 2D surface cracks in electrically conducting parts from Eddy-current images. The proposed method relies on the use of a direct semi-analytic model suitable for Eddy-current systems featuring a uniform current excitation. The surface crack reconstruction approach is based on the comparison of eddy current images computed by the model with the eddy current image of the crack to reconstruct. The method is implemented by means of a genetic algorithm and accurate reconstruction is carried out with synthetic data.

Keywords: 

Eddy currents, inverse problem, imaging system, genetic algorithm, semi analytic modeling, direct model, non destructive evaluation.

1. Introduction
2. Modèle direct de fissures pour les systèmes à courants de Foucault à émission globale
3. Étude paramétrique d’images courants de Foucault
4. Reconstruction de fissures par algorithme génétique
5. Conclusion
  References

Ahn C. W. (2006). Advances in evolutionary algorithms. Springer-Verlag Berlin Heidelberg. 

Bernieri A., Ferrigno L., Laracca M., Molinara M. (2008). Crack shape reconstruction in eddy current testing using machine learning systems for regression. instrumentation and measurement, IEEE transactions on, vol. 57, n° 9, p. 1958-1968.

Cai C., Rodet T., Lamber M. (2014). Influence of partially known parameter on flaw characterization in Eddy Current Testing by using a random walk MCMC method based on metamodeling. In Journal of Physics: Conference Series, vol. 542, n° 1, p. 012009. IOP Publishing.

Colton D., Päivärinta L. (1992). The uniqueness of a solution to an inverse scattering problem for electromagnetic waves. Archive for rational mechanics and analysis, vol. 119, n° 1, p. 59-70.

Douvenot R., Lambert M., Lesselier D. (2011). Adaptive metamodels for crack characterization in eddy-current testing. Magnetics, IEEE Transactions on, vol. 47, n° 4, p. 746-755.

Goldberg D. E., Holland J. H. (1988). Genetic algorithms and machine learning. Machine learning, vol. 3, n° 2, p. 95-99.

Isakov V. (1993). Uniqueness and stability in multi-dimensional inverse problems. Inverse Problems, vol. 9, n° 6, p. 579.

Koyama, K., Hoshikawa, H., Taniyama N. (2000, October). Investigation of eddy current testing of weld zone by uniform eddy current probe. In Proceedings of WCNDT.

Kubinyi M., Docekal A., Ramos H., Ribeiro A. (2010). Signal processing for non-contact NDE. Przegląd Elektrotechniczny, vol. 86, n° 1, p. 249-254. Placko D., Bore T., Kundu T. (2012). Ultrasonic and Electromagnetic NDE for Structure and Material Characterization: Engineering and Biomedical Applications. CRC Press.

Ribeiro A. L., Ramos H. G., Pasadas D., Rocha T. (2014, February). Regularization methods to assess the eddy current density inside conductive non-ferromagnetic media. In 40th Annual Review Of Progress In Quantitative Nondestructive Evaluation: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing, vol. 1581, n° 1, AIP Publishing, p. 1428-1432.

Sabbagh H. A., Sabbagh L. D. (1986). An eddy-current model for three-dimensional inversion. Magnetics, IEEE Transactions on, vol. 22, n° 4, p. 282-291.

Tamburrino A., Calvano F., Ventre S., Rubinacci G. (2012). Non-iterative imaging method for experimental data inversion in eddy current tomography. NDT & E International, 47, p. 26-34.

Thomas V., Joubert P. Y., Vourc’h E., Placko D. (2010, February). A novel modeling of surface breaking defects for eddy current quantitative imaging. In Sensors Applications Symposium (SAS), 2010 IEEE, IEEE, p. 154-157.

Yamamoto M. (1997). A mathematical aspect of inverse problems for non-stationary Maxwell's equations. International Journal of Applied Electromagnetics and Mechanics, vol. 8, n° 1, p. 77-98.