Detection and characterization of surface defects based on the analysis of 3D point clouds provided by a scanner

Detection and characterization of surface defects based on the analysis of 3D point clouds provided by a scanner

Igor Jovancevic 
Huy-Hieu Pham 
Jean-José Orteu 
Rémi Gilblas 
Jacques Harvent 
Xavier Maurice 
Ludovic Brèthes 

Institut Clément Ader (ICA) ; Université de Toulouse ; CNRS, IMT Mines Albi, INSA, ISAE-SupAéro, UPS ; Campus Jarlard, 81013 Albi CT Cedex 09, France

KEONYS, 5 av. de l’Escadrille Normandie-Niemen, 31700 Blagnac, France

Corresponding Author Email: 
jean-jose.orteu@mines-albi.fr
Page: 
261-282
|
DOI: 
https://doi.org/10.3166/i2m.16.1-4.261-282
Received: 
|
Accepted: 
|
Published: 
31 December 2017
| Citation

ACCESS

Abstract: 

We have developed a software for the detection and characterisation  of defects based on the analysis of 3D point clouds provided by a scanner. This software has been developed within an industrial application dealing with the control of an aircraft fuselage surface. It could be also used for other applications like the detection of defects on a car body surface

Keywords: 

inspection, surface defects, 3D point clouds, 3D scanner

1. Introduction
2. Méthodologie utilisée dans l’aéronautique pour la détection et la caractérisation des dommages
3. Méthodologie de détection et caractérisation des défauts proposée
4. Résultats et discussion
5. Conclusions et perspectives
Remerciements

Le projet Air-Cobot (http://aircobot.akka.eu), labellisé par le pôle de compétitivité mondial Aerospace Valley, a été financé par l’Etat via le FUI. Nous remercions éga- lement les partenaires de Air-Cobot  (AKKA,  Airbus, Sterela, M3Systems, 2MoRO, LAAS-CNRS et ARMINES/Mines Albi) pour leur aide et leur contribution à ce pro- jet, ainsi que Nicolas Simonot et Patrick Metayer d’Airbus/NDT  pour leur aide concernant les mesures mettant en œuvre le comparateur Airbus standard

  References

Dey T. K., Li G., Sun J.  (2005). Normal estimation for point clouds: A comparison study for a Voronoi based method. In Proceedings of the Second Eurographics  / IEEE VGTC Conference on Point-Based Graphics, p. 39–46.

Dimitrov D., Knauer C., Kriegel K., Rote G.  (2006). On the bounding  boxes obtained by principal component analysis. In 22nd European Workshop on Computational Geometry, p. 193–196.

Dyn N., Hormann K., Kim S., Levin D. (2001). Optimizing 3D triangulations using discrete curvature analysis.  Mathematical  methods for curves and surfaces, vol. 28, no 5, p. 135–146.

Gottschalk S., Lin M. C., Manocha D.  (1996). OBBTree: A hierarchical structure for rapid interference detection. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, p. 171–180.

Jolliffe I. (2002). Principal component analysis. Wiley Online Library.

Jovancevic I. (2016). Exterior inspection of an aircraft using a Pan-Tilt-Zoom camera and a 3D scanner moved by a mobile robot: 2D image processing and 3D point cloud analysis. Thèse de doctorat, Université de Toulouse, Mines Albi.

Jovancevic I., Larnier S., Orteu J.-J., Sentenac T. (2015, novembre).  Automated exterior ins- pection of an aircraft with a pan-tilt-zoom  camera mounted on a mobile  robot. Journal of Electronic Imaging, vol. 24, no 6, p. 061110.

Jovancevic I., Orteu J.-J., Sentenac T., Gilblas R. (2015, 16-20 novembre).  Inspection d’un aéronef à partir d’un système multi-capteurs porté par un robot mobile. In Proceedings of 14ème Colloque Méthodes et Techniques Optiques pour l’Industrie. Lannion, France.

Jovancevic I., Pham H.-H., Orteu J.-J., Gilblas R., Harvent J., Maurice X. et al. (2017). 3D point cloud analysis for detection and characterization  of defects on airplane exterior surface. Journal of Nondestructive Evaluation. (under review)

Klasing K., Althoff D., Wollherr D., Buss M. (2009). Comparison of surface normal estimation methods for range sensing applications.   In ICRA’09 - IEEE International  conference on Robotics and Automation, p. 3206–3211.

Koenderink J. J., Doorn A. J. van. (1992).  Surface shape and curvature scales. Image and vision computing, vol. 10, no 8, p. 557–564.

Lancaster P., Salkauskas K.  (1981). Surfaces generated by moving least squares methods. Mathematics of computation, vol. 37, no 155, p. 141–158.

Levin D. (1998). The approximation power of moving least-squares. Mathematics of Compu- tation of the American Mathematical Society, vol. 67, no 224, p. 1517–1531.

Levin D. (2004). Mesh-independent surface interpolation.  In Geometric modeling for scientific visualization, p. 37–49. Springer.

Mitra N. J., Nguyen  A.  (2003). Estimating  surface normals in noisy point cloud data. In Proceedings of the nineteenth annual symposium on Computational  geometry, p. 322–328.

Nealen A.  (2004). An as-short-as-possible introduction  to the least squares, weighted  least squares and moving  least squares methods for scattered data approximation  and interpola- tion. URL: http://www. nealen. com/projects, vol. 130, p. 150.

Pauly M., Gross M., Kobbelt L. P.  (2002). Efficient simplification of point-sampled surfaces. In Proceedings of the conference on Visualization’02, p. 163–170.

Peng J., Li Q., Kuo C.-C. J., Zhou M. (2003). Estimating Gaussian curvatures from 3D meshes. In Electronic imaging 2003, p. 270–280.

Rusu R. B. (2009). Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments. Doctoral dissertation, Technische Universität München.

Shakarji C. M. et al.  (1998). Least-squares fitting algorithms of the NIST algorithm testing system. Journal of Research-National Institute of Standards and Technology, vol. 103, p. 633–641.

Wendland H. (1995). Piecewise polynomial, positive definite and compactly supported radial functions of minimal  degree. Advances in computational Mathematics, vol. 4, no 1, p. 389–396.

Zhang X., Li H., Cheng Z., Zhang Y. (2009). Robust curvature estimation and geometry analysis of 3D point cloud surfaces. J. Inf. Comput. Sci, vol. 6, no 5, p. 1983–1990