Performance Analysis of a Radial Flux PM Machine Using a Hybrid Analytical Model and a MBG Reluctance Network Model

Performance Analysis of a Radial Flux PM Machine Using a Hybrid Analytical Model and a MBG Reluctance Network Model

Abdourahman Aden Diriyé Yacine Amara Georges Barakat Sami Hlioui Olivier De La Barrière Mohamed Gabsi

GREAH, EA3220, Université du Havre 75 rue Bellot, 76058 Le Havre, France

GREAH, EA3220, Université du Havre 75 rue Bellot, 76058 Le Havre, France

Corresponding Author Email:,
12 June 2015
1 December 2016
30 April 2016
| Citation



In this contribution, open circuit performances (flux linkage, EMF, cogging torque, open-circuit iron loss) of a permanent magnet radial flux rotating machine are analysed using a new hybrid analytical model and a mesh-based generated reluctance network model (MBGRN). The hybrid analytical model (HAM) is based on strong coupling of analytical solution of Maxwell’s equations with reluctance network (RN). It is shown that the hybrid analytical model allows to combine advantages of analytical and reluctance networks modeling approaches. As compared to reluctance networks modeling, the new approach helps reduce calculation time while giving fairly good results.


Maxwell equations, analytic modeling, reluctance networks, magnetic equivalent circuits, direct coupling, air-gap modeling.

1. Introduction
2. Radial Field PM Rotating Machine
3. Reluctance Network Model
4. Hybrid Analytical Model
5. Calculation of Global Quantities
6. Comparison Study
7. Conclusion

Amara Y., Reghem P., and Barakat G. (2010). Analytical prediction of eddy-current loss in armature windings of permanent magnet brushless AC machines. IEEE Trans. Magn., vol. 46, n° 8, p. 3481-3484.

Amrhein M. and Krein T. K. (2009). 3-D Magnetic equivalent circuit framework for modeling electromechanical devices. IEEE Trans on Energy Convers, vol. 24, n° 2, p. 397-405.

Barakat G. and Amara Y. (2014). A simple and effective way to couple analytical formal solution of magnetic potential and reluctance network models, Proceedings of 9th IET International Conference on Computation in Electromagnetics (CEM 2014), pp. 1-2, March 31 2014-April 1 2014, London.

Bellara A., Bali H., Belfkira R., Amara Y., and Barakat G. (2011). Analytical prediction of open-circuit eddy-current loss in series double excitation synchronous machines. IEEE Trans. Magn., vol. 47, n° 9, p. 2261–2268.

Bertotti G., Boglietti A., Mario C, Chiampi D., Fiorillo F. and Lazzari M. (1991). An improved estimation of iron losses in electrical machines. IEEE Trans. Magn., vol. 27, n° 6, p. 5007-5009.

Gholizad H., Mirsalim M. and Mirzayee M. (2006). Dynamic analysis of highly saturated switched reluctance motors using coupled magnetic equivalent circuit and the analytical solution, in Proceedings of CEM 2006, International Conference on Computational Electromagnetics 2006, Aachen, Germany.

Mirzaei M., Mirsalim M., Cheng W. and Ghoizad H. (2007). Analysis of solid rotor induction machines using coupled analytical method and reluctance networks. International Journal of Applied Electromagnetics and Mechanic, vol. 25, p. 193-197.

Nedjar B. (2011). Modélisation basée sur la méthode des réseaux de perméances en vue de l’optimisation de machines synchrones à simple et à double excitation. Thèse de Doctorat, Ecole Normale Supérieure de Cachan, Décembre 2011 (Ph. D. Thesis manuscript, in french).

Ouagued S., Amara Y. and Barakat G. (2014). Comparison of hybrid analytical modelling and reluctance network modelling for pre-design purposes, in Proceedings of ELECTRIMACS 2014, Valencia, Spain.

Perho J. (2002). Reluctance network for analysing induction machines, Acta Polytechnica Scandinavica, Electrical Engineering Series, no. 110, Espoo 2002, Finish Academies of Technology.

Sykulski J. (1995). Computational magnetics, James & James (Science Publishers) Ltd and Chapman & Hall, 1995.

Tiegna H., Amara Y. and Barakat G. (2013). Overview of analytical models of permanent magnet electrical machines for analysis and design purposes. Mathematics and Computers in Simulation, vol. 90, p. 162-177.