Microstructure and corrosion behaviour of cobalt-molybdenum coatings electrodeposited on pure cobalt

Microstructure and corrosion behaviour of cobalt-molybdenum coatings electrodeposited on pure cobalt

Vignal, V. Krawiec, H. Erazmus-Vignal, P. Latkiewicz, M. 

Laboratoire de Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS - Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon Cedex, 21078, France

AGH University of Science and Technology, Faculty of Foundry Engineering, ul. Reymonta 23, Krakow, 30-059, Poland

1 October 2015
7 January 2016
11 May 2016
| Citation



Electrodeposition is a versatile route to produce new nanocrystalline alloys. Only a few studies concern the corrosion behaviour of these nanocrystalline alloys. In the present paper, the physical-chemical properties of Co-Mo coatings electrodeposited on pure cobalt are investigated by means of field-emission scanning electron microscopy coupled with energy dispersive spectroscopy (FE-SEM/EDS), optical profilometry and microhardness tests. The influence of potential applied during electrodeposition is discussed. The corrosion behaviour of these coatings is then studied in the Ringer's solution at 25 °C. Obtained results are analyzed considering the physical-chemical properties of coatings. 

1. Introduction
2. Experimental Conditions
3. Experimental Results and Discussion
4. Conclusions

[1] Suryanarayana, C., Koch, C.C. (2000). Nanocrystalline materials – Current research and future directions. Hyperfine Interactions, 130 (1-4): 5-44. http://www.springerlink.com/content/0304-3843. https://doi.org/10.1023/A:1011026900989

[2] Bhardwaj, M., Balani, K., Balasubramaniam, R., Pandey, S., Agarwal, A. (2011). Effect of current density and grain refining agents on pulsed electrodeposition of nanocrystalline nickel. Surface Engineering, 27 (9): 642-648. http://docserver.ingentaconnect.com/deliver/connect/maney/02670844/v27n9/s2.pdfexpires=1319758517&id=65197118&titleid=3817&accname=Elsevier&checksum=DBE037BC6D3091FBAEEF6187EC9145C4. https://doi.org/10.1179/026708410X12683118611185

[3] Karimpoor, A.A., Erb, U., Aust, K.T., Palumbo, G. (2003). High strength nanocrystalline cobalt with high tensile ductility. Scripta Materialia, 49 (7): 651-656. https://doi.org/10.1016/S1359-6462(03)00397-X

[4] Cavaliere, P. (2009). Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. International Journal of Fatigue, 31 (10): 1476-1489. https://doi.org/10.1016/j.ijfatigue.2009.05.004

[5] Bicelli, L.P., Bozzini, B., Mele, C., D'Urzo, L. (2008). A review of nanostructural aspects of metal electrodeposition. International Journal of Electrochemical Science, 3 (4): 356-408. http://www.electrochemsci.org/papers/vol3/3040356.pdf

[6] Wang, Y.M., Cheng, S., Wei, Q.M., Ma, E., Nieh, T.G., Hamza, A. (2004). Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni. Scripta Materialia, 51 (11): 1023-1028. https://doi.org/10.1016/j.scriptamat.2004.08.015

[7] Wang, L., Gao, Y., Xu, T., Xue, Q. (2006). A comparative study on the tribological behavior of nanocrystalline nickel and cobalt coatings correlated with grain size and phase structure. Materials Chemistry and Physics, 99 (1): 96-103. https://doi.org/10.1016/j.matchemphys.2005.10.014

[8] Jeong, D.H., Gonzalez, F., Palumbo, G., Aust, K.T., Erb, U. (2001). The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings. Scripta Materialia, 44 (3): 493-499. https://doi.org/10.1016/S1359-6462(00)00625-4

[9] Roco, M.C., Mirkin, C.A., Hersam, M.C. (2010). WTEC Panel Report on Nanotechnology Research Directions for Societal Needs in 2020. Retrospective and Outlook, pp. 361-388, Chapter 11, September, Springer Editions

[10] Prado, R.A., Facchini, D., Mahalanobis, N., Gonzalez, F., Palumbo, G. (2009). Proceedings of the Department of Defense Corrosion Conference. 10-14 august, Gaylord National, Washington DC (USA)

[11] Wu, B.Y.C. (2002). Degree of Master of Science in Materials Science and Engineering. University of Toronto, Canada

[12] Spasojević, M., Ribić-Zelenović, L., Maričić, A. (2011). The Phase Structure and Morphology of Electrodeposited Nickel-Cobalt Alloy Powders. Science of Sintering, 43 (3): 313-327. http://www.doiserbia.nb.rs/ft.aspx?id=0350-820X1103313S. https://doi.org/10.2298/SOS1103313S

[13] Rafailović, L.D., Minić, D.M.(2009). Deposition and characterisation of nanostructured nickel-cobalt alloys. Hemijska Industrija, 63 (5A): 557-569. http://www.ache.org.rs/HI/2009/No5a/12_FH4_2009_5a.pdf. https://doi.org/10.2298/HEMIND0905557R

[14] Contu, F., Elsener, B., Böhni, H. (2005). Corrosion behaviour of CoCrMo implant alloy during fretting in bovine serum. Corrosion Science, 47 (8): 1863-1875. https://doi.org/10.1016/j.corsci.2004.09.003

[15] Heidari, A., Heidari, N., Jahromi, F.K., Amiri, R., Zeinalkhani, M., Ghorbani, F., Piri, A., (...), Ghorbani, M. (2012). International Journal of Scientific & Engineering Research, 3 (3): 360-363.

[16]Kim, S.H., Aust, K.T., Erb, U., Gonzalez, F., Palumbo, G.(2003). A comparison of the corrosion behaviour of polycrystalline and nanocrystalline cobalt. Scripta Materialia, 48 (9): 1379-1384. https://doi.org/10.1016/S1359-6462(02)00651-6

[17] Cheng, D., Tellkamp, V.L., Lavernia, C.J., Lavernia, E.J. (2001). Corrosion properties of nanocrystalline Co-Cr coatings. Annals of Biomedical Engineering, 29 (9): 803-809. https://doi.org/10.1114/1.1397790

[18] Cheraghi, M.S., Allahkaram, S.R., Towhidi, N., Khonsari, S.K., Rabizadeh, T. (2011). Nano cobalt coating corrosion behavior obtained by DC and PC electrodeposition process. 2011 IEEE Nanotechnology Materials and Devices Conference, NMDC 2011, art. no. 6155348, pp. 228-231. ISBN: 978-145772139-7. https://doi.org/10.1109/NMDC.2011.6155348

[19] Krawiec, H., Vignal, V., Finot, E., Heintz, O., Oltra, R., Olive, J.M. (2004). Local electrochemical studies after heat treatment of stainless steel: Role of induced metallurgical and surface modifications on pitting triggering. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 35A(11): 3515-3521. http://www.springerlink.com/content/1073-5623?sortorder=asc&p_o=54. https://doi.org/10.1007/s11661-004-0188-3

[20] Krawiec, H., Vignal, V., Akid, R. (2008). Numerical modelling of the electrochemical behaviour of 316 stainless steel based upon static and dynamic experimental microcapillary-based techniques: Effect of electrolyte flow and capillary size. Surface and Interface Analysis, 40 (3-4): 315-319. https://doi.org/10.1002/sia.2753

[21] Krawiec, H., Vignal, V., Amar, H., Peyre, P. (2011). Local electrochemical impedance spectroscopy study of the influence of ageing in air and laser shock processing on the micro-electrochemical behaviour of AA2050-T8 aluminium alloy. Electrochimica Acta, 56 (26): 9581-9587. https://doi.org/10.1016/j.electacta.2011.01.091

[22] Messaoudi, Y., Fenineche, N., Guittoum, A., Azizi, A., Schmerber, G., Dinia, A. (2013). A study on electrodeposited Co-Mo alloys thin films. Journal of Materials Science: Materials in Electronics, 24 (8): 2962-2969. https://doi.org/10.1007/s10854-013-1198-y

[23] Gómez, E., Pellicer, E., Vallés, E. (2003). Influence of the bath composition and the pH on the induced cobalt-molybdenum electrodeposition. Journal of Electroanalytical Chemistry, 556: 137-145. https://doi.org/10.1016/S0022-0728(03)00339-5