Ceramic monolith- and foam-structured catalysts via in-situ combustion deposition for energetic applications

Ceramic monolith- and foam-structured catalysts via in-situ combustion deposition for energetic applications

Cristina Italiano Lidia Pino Massimo Laganà Antonio Vita 

CNR-ITAE “Nicola Giordano”, Salita S. Lucia sopra Contesse 5, 98126, Messina, Italy

Corresponding Author Email: 
cristina.italiano@itae.cnr.it
Page: 
405-418
|
DOI: 
https://doi.org/10.3166/ACSM.42.405-418
Received: 
| |
Accepted: 
| | Citation

OPEN ACCESS

Abstract: 

In this work, the Me/CeO2 (Me = Rh, Ni) catalytic phase was in-situ deposited by the Solution Combustion Synthesis (SCS) on commercial cordierite monolith (500 cpsi) and alumina open-cell foams (20,30,40 ppi). All the coated structures were characterized by SEM/EDX to analyze the morphological characteristics of the coated films; the mechanical stability was analyzed by ultrasound tests; pressure drops at different superficial velocities were derived. The catalytic activity and stability were investigated towards Steam Reforming (SR) and Oxy-Steam Reforming (OSR) of different fuels (CH4, biogas, n-dodecane) and CO2 methanation reaction. High catalytic activity was observed for both reforming and methanation processes, following the order 500 cpsi-monolith < 20 ppi-foam < 30 ppi-foam ≈ 40 ppi-foam. Excellent long-term stability was observed over 200 h of time-on-stream (TOS)

Keywords: 

monolith, open-cell foam, methanation, reforming, structured catalysts

1. Introduction
2. Experimental
3. Results and discussion
4. Conclusions
  References

Achouri E., Abatzoglou N., Fauteux-Lefebvre C., Braidy N. (2013). Diesel steam reforming: Comparison of two nickel aluminate catalysts prepared by wet-impregnation and co-precipitation. Catal. Today, Vol. 207, pp. 13-20. https://doi.org/10.1016/j.cattod.2012.09.017

Arunachalam U. P., Edwin M. (2017). Theoretical investigation of a ceramic monolith heat exchanger using silicon carbide and aluminium nitride as heat exchanger material. IJHT, Vol. 35, pp. 645-650. https://doi.org/10.18280/ijht.350323

Bereketidou O. A., Goula M. A. (2012). Biogas reforming of syngas production over nickel supported on ceria-alumina catalysts. Catal. Today, Vol. 195, No. 1, pp. 93-100. https://doi.org/10.1016/j.cattod.2012.07.006

Borreani W., Bruzzone M., Chersola D., Firpo G., Lomonaco G., Palmero M., Panza F., Ripani M., Saracco P, Viberti C. M. (2017). Preliminary thermal-fluid-dynamic assessment of an ADS irradiation facility for fast and slow neutrons. IJHT, Vol. 35, pp. S186-S190. https://doi.org/10.18280/ijht.35Sp0126

Buciuman F., Kraushaar-Czarnetzki B. (2003). Ceramic foam monoliths as catalyst carriers. 1. Adjustment and description of the morphology. Ind. Eng. Chem. Res., Vol. 42, No. 9, pp. 1863-1869. https://doi.org/10.1021/ie0204134

Curcio S. (2013). Process intensification in the chemical industry: A review. in Sustainable development in chemical engineering: Innovative technologies, 1st ed., V. Piemonte, M. De Falco and A. Basile. John Wiley & Sons, pp. 95-118. http://dx.doi.org/10.1002/9781118629703.ch5

Cybulski A., Moulijn J. A. (1994). Modelling of heat transfer in metallic monoliths consisting of sinusoidal cells. Chem. Eng. J., Vol. 49, No. 1, pp. 19-27. https://doi.org/10.1016/0009-2509(94)85030-5

Dagle R. A., Karim A., Li G., Su Y., King D. L. (2011). Syngas conditioning. in Fuel cells: Technologies for fuel processing, D. Shekhawat, J.J. Spivey, D.A. Berry, Elsevier, pp. 361-408. http://dx.doi.org/10.1016/B978-0-444-53563-4.10012-4

Dekker F. H., Bliek A., Kapteijn F., Moulijn J. A. (1995). Analysis of mass and heat transfer in transient experiments over heterogeneous catalysts. Chem. Eng. Sci., Vol. 50, pp. 3573-3580. https://doi.org/10.1016/0009-2509(95)00210-V

Duyar M. S., Ramachandran A., Wang C., Farrauto R. J. (2015). Kinetics of CO2 methanation over Ru/γ-Al2O3 and implications for renewable energy storage applications. J. CO2 Util., Vol. 12, pp. 27-33. https://doi.org/10.1016/j.jcou.2015.10.003

Ercolino G., Karimi S., Stelmachowski P., Specchia S. (2017). Catalytic combustion of residual methane on alumina monoliths and open cell foams coated with Pd/Co3O4. Chem. Eng. J., Vol. 326, pp. 339-349. https://doi.org/10.1016/j.cej.2017.05.149

Ercolino G., Stelmachowski P., Specchia S. (2017). Catalytic performance of Pd/Co3O4 onSiC and ZrO2 open cell foams for process intensification of methane combustion in lean conditions. Ind. Eng. Chem. Res., Vol. 56, pp. 6625-6636. https://doi.org/10.1021/acs.iecr.7b01087

Fukuhara C., Hayakawa K., Suzuki Y., Kawasaki W., Watanabe R. (2017). A novel nickel based structured catalyst for CO2 methanation: A honeycomb-type Ni/CeO2 catalyst to transform greenhouse gas into useful resources. Appl. Catal. A, Vol. 532, pp. 12-18. https://doi.org/10.1016/j.apcata.2016.11.036

Groppi G., Beretta A., Tronconi E. (2005). Monolithic catalysts for gas-phase syntheses of chemicals” in Structured catalysts and reactors. 2nd ed., A. Cybulski and J.A. Moulijn, CRC Press. Taylor & Francis Group, pp. 243-310. https://doi.org/10.1016/j.cej.2017.05.149

Kim J. H., Suh D. J., Park T. J., Kim K. L. (2000). Effect of metal particle size on coking during CO2 reforming of CH4 over Ni–alumina aerogel catalysts. Appl. Catal. A, Vol. 197, No. 2, pp. 191-200. https://doi.org/10.1016/S0926-860X(99)00487-1

Li Y., Zhang Q., Chai R., Zhao G., Liu Y., Lu Y. (2015). Ni-Al2O3/Ni-foam catalyst with enhanced heat transfer for hydrogenation of CO2 to methane. AIChE J., Vol. 61, pp. 4323-4331. https://doi.org/10.1002/aic.14935

Parmar R. D., Kundu A., Karan K. (2009). Thermodynamic analysis of diesel reforming process: Mapping of carbon formation boundary and representative independent reactions. J. Power Sources, Vol. 194, No. 2, pp. 1007-1020. https://doi.org/10.1016/j.jpowsour.2009.06.028

Rostrup-Nielsen J. R., Pedersen K., Sehested J. (2007). High temperature methanation. Sintering and structure sensitivity. Appl. Catal. A, Vol. 330, pp. 134-138. https://doi.org/10.1016/j.apcata.2007.07.015

Sadykov V., Mezentseva N., Fedorova Y., Lukashevich A., Pelipenko V., Kuzmin V., Simonov M., Ishchenko A., Vostrikov Z., Bobrova L., Sadovskaya E., Muzykantov V., Zadesenets A., Smorygo O., Roger A. C., Parkhomenko K. (2015). Structured catalysts for steam/autothermal reforming of biofuels on heat-conducting substrates: Design and performance. Catal. Today, Vol. 251, pp. 19-27. https://doi.org/10.1016/j.cattod.2014.10.045

Song C., Pan W. (2004). Tri-reforming of methane: A novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catal. Today, Vol. 98, No. 4, pp. 463-484. https://doi.org/10.1016/j.cattod.2004.09.054

Specchia S., Ercolino G., Karimi S., Italiano C., Vita A. (2017). Solution combustion synthesis for preparation of structured catalysts: A mini-review on process intensification for energy applications and pollution control. J. Self-Propag. High-Temp. Synth., Vol. 26, No. 3, pp. 166-186. https://doi.org/10.3103/S1061386217030062

Vita A., Cristiano G., Italiano C., Pino L., Specchia S. (2015). Syngas production by methane oxy-steam reforming on Me/CeO2 (Me = Rh, Pt, Ni) catalyst lined on cordierite monoliths. Appl. Catal. B, Vol. 162, pp. 551-563. https://doi.org/10.1016/j.apcatb.2014.07.028

Vita A., Italiano C., Fabiano C., Pino L., Laganà M., Recupero V. (2016). Hydrogen-rich gas production by steam reforming of n-dodecane: Part I: Catalytic activity of Pt/CeO2 catalysts in optimized bed configuration. Appl. Catal. B, Vol. 199, pp. 350-360. https://doi.org/10.1016/j.apcatb.2016.06.042

Vita A., Italiano C., Pino L., Frontera Ferraro P., M., Antonucci V. (2018). Activity and stability of powder and monolith-coated Ni/GDC catalysts for CO2 methanation. Appl. Catal. B, Vol. 226, pp. 384-395. https://doi.org/10.1016/j.apcatb.2017.12.078

Wijaya W. Y., Kawasaki S., Watanabe H., Okazaki K. (2012). Damköhler number as a descriptive parameter in methanol steam reforming and its integration with absorption heat pump system. Appl. Energy, Vol. 94, pp. 141-147. https://doi.org/10.1016/j.apenergy.2012.01.041

Williams J. L. (2001). Monolith structures, materials, properties and uses. Catal. Today, Vol. 69, No. 1-4, pp. 3-9. https://doi.org/10.1016/S0920-5861(01)00348-0

Xu L., Yang H., Chen M., Wang F., Nie D., Qi L., Lian X., Chen H., Wu M. (2017). CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier. J. CO2 Util., Vol. 21, pp. 200-210. https://doi.org/10.1016/j.jcou.2017.07.014

Zeppieri M., Villa P. L., Verdone N., Scarsella M., De Filippis P. (2010). Kinetic of methane steam reforming reaction over nickel-and rhodium-based catalysts. Appl. Catal. A, Vol. 387, No. 1-2, pp. 147-154. https://doi.org/ 10.1016/j.apcata.2010.08.017