Structural and dielectric properties of (Bi) modified PLSZT ceramics

Structural and dielectric properties of (Bi) modified PLSZT ceramics

F. Saouli F. Z. Sriti M. Abba Z. Necira H. Menasra A. Beddari 

LMCE, Laboratory of Molecular Chemistry and Environment, University of Biskra, Algeria BP 145 RP, Biskra 07000, Algeria

Laboratory of Applied Chemistry, University of Biskra, Algeria BP 145 RP, Biskra 07000, Algeria

Corresponding Author Email:
30 June 2018
| Citation



 Piezoelectric ceramics are widely used in various applications such as lead zirconate titanate (PZT), especially after the development of acceptor or donor dopant. This is why all studies are interested in the effect of dopants on the properties of PZT ceramics are in great demand. In this work, the polycrystalline samples of Pb(0.95-x) La 0.03 Sm0.02 Bi x(Zr0.3,Ti0.7)O3 (x=0, 0.02, 0.04, 0.06, 0.08, 0.1) were prepared by a high-temperature solid-state reaction technique. Scanning electron micrograph (SEM) and X-ray diffraction (XRD) techniques was employed to examine the crystallization of the ceramics. The results of XRD show that the phase structure of the samples is tetragonal. The dielectric constant and the dielectric loss of the investigated samples decreased with increase in the frequency, then we can say that the doping with the Bi on PLSZT, enhances the dielectric and electrical properties


ferroelectric, microstructure, piezoelectric ceramics, dielectric properties

1. Introduction
2. Materials and methods
3.Result and discussion
4. Conclusion

Aoki T., Kuwabara M., Kondo M., Tsukada M., Kurihara K., Kamehara N. (2004). Micropatterned epitaxial (Pb,La)(Zr,Ti)O3 (Pb,La) (Zr,Ti)O3 thin films on NbNb doped SrTiO3SrTiO3 substrates by a chemical solution deposition processwith resist molds. Japanese Journal of Applied Physics, Vol. 85, No. 13, pp. 2580–2582.

Arunachalam U. P., Edwin M. (2017). Theoretical investigation of a ceramic monolith heat exchanger using silicon carbide and aluminium nitride as heat exchanger material. International Journal of Heat and Technology, Vol. 35, No. 1, pp. 645-650. 

Azuma M., Takata K., Saito T., Ishiwata S., Shimakawa Y., Takano M. (2005). Designed Ferromagnetic, Ferroelectric Bi2NiMnO6. J. Am. Chem. Soc., Vol. 127, pp. 8889.

Bottchar C. J. F. (1952). New dielectric mixture equation for porous materials based on depolarization factors. Theory of Electric Polarization. 

Campbell D. S., Morley A. R. (1964). Electrical conduction in thin metallic, dielectric and metallic-dielectric films. Reports on Progress in Physics.

Carim H., Tuttle B. A., Doughty D. H., Martinez S. L. (1992). Microstructure of solution-processed lead zirconate titanate (PZT) thin film. Journal of the American Ceramic Society, Vol. 74, No. 6, pp. 1455–1458.

Cerqueira M., Nasar R. J., Leite E. R., Longo E., Varela J. A. (2000). Sintering and characterization of PLZT (9/65/35). Ceramics International, Vol. 26, No. 3, pp. 231-236.

Chandratreya S. S., Fulrath R. M., Pask J. A. (1981). Reaction mechanisms in the formation of PZT solid solutions. Journal of the American Ceramic Society, Vol. 64, No. 7, pp. 422-425.

Grekhov I., Delimova L., Liniichuk I., Mashovets D., Veselovsky I. (2003). Phase transition in sol-gel-derived Na-modified PLZT ceramics. Ferroelectrics, No. 286, pp. 237-244.

Gu H. S., Bao D. H., Wang S. M., Gao D. F., Kuang A. X., Li X. J. (1996). Synthesis and optical properties of highly c-axis oriented Bi4Ti3O12 thin films by sol-gel processing. Thin Solid Films, Vol. 283, No. 1-2, pp. 81-83.

Hiremath B. V., Kingon A. I., Biggers J. V. (1983). Reaction sequence in the formation of lead zirconate-lead titanate solid solution: Role of raw materials. Journal of the American Ceramic Society, Vol. 66, No. 11, pp. 790-793. 

Jaffe B., Crook W. R., Jaffe H. (1971). Effect of sm substitution on structural, dielectric, and transport properties of PZT ceramics. Piezoelectric Ceramics Academic Press.

Kanai H., Furukawa O., Abe H., Yamashita Y., Am J. (1994). dielectric properties of (pb1–xxx)(zr0. 7ti0. 3) o3 (x= ca, sr, ba) ceramics. Ceram, No. 77, pp. 2620-2624.

Lian J., Wang L., Chen J., Sun K., Ewing R. C., Farmer J. M., Boatner L. A. (2003). The order-disorder transition in ion-irradiated pyrochlore. Acta Materialia, Vol. 51, No. 5, pp. 1493-1502. 

Lines M. E., Glass A. M. (2001). Principles and applications of ferroelectrics and related materials. Oxford University Press, pp. 189-204.

Mabud S. A. (1980). The morphotropic phase boundary in PZT solid solutions. Journal of Applied Crystallography, Vol. 13, No. 3, pp. 211-216.

Mirzaei A., Bonyani M., Torkian S. (2016). Effect of Nb doping on sintering and dielectric proprerties of PZT cermaics. Processing and Application of Ceramics, No. 10, pp. 175-182.

Panigrahi S. C., Das P. R., Parida B. N., Padhee R., Choudhary R. N. P. (2014). Dielectric and electrical properties of gadolinium-modified lead-zirconate-titanate system. Journal of Alloys and Compounds, Vol. 604,  pp. 73–82.

Prakash C., Thakur O. P., Mater. (2003). Effects of samarium modification on the structural and dielectric properties of PLZT ceramics. Lett, pp. 2310-2314.

Ramam K., Miguel V. (2006). Microstructure, dielectric and ferroelectric characterization of Ba doped PLZT ceramics. The European Physical Journal-Applied Physics, Vol. 35, No, 1, pp. 43-47.

Shannigrahi S., Choudhary R. N. P., Acharya H. N., Sinha T. P. (1999). Phase transition in sol-gel-derived Na-modified PLZT ceramics. Journal of Physics D: Applied Physics, Vol. 32, No. 13, pp. 1539-1547.

Wang L., Song T. K., Lee S. C., Cho J. H., Sakka Y. (2011). Effect of Bi (B) O3 perovskite substitution on enhanced tetragonality and ferroelectric transition temperature in Pb (Zr, Ti) O3 ceramics. Japon, Vol. 129, No. 1-2, pp. 322-325.

Zhong W. L., Wang Y. G., Zhang P. L., Qu B. D. (1994). Phenomenological study of the size effect on phase transitions in ferroelectric particles. Physical Review B, Vol. 50, No. 2, pp. 698-703.