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Lung cancer is the leading cause of mortality worldwide, affecting both men and women 

equally. Identifying and treating these nodules when they are still tiny may increase their 

chances of survival significantly. However, due to the large amount of data generated by 

this CT scanner, manual segmentation and interpretation takes a long time and is quite 

challenging to do on your own. When a radiologist focuses on the patient's body, it increases 

the strain on the radiologist, and the likelihood of missing pathological information, such as 

abnormalities, is also increased. One of the primary objectives of this project is to develop 

computer-assisted diagnosis and detection of lung cancer. It also intends to make it easier 

for radiologists to identify and diagnose lung cancer more rapidly and accurately. Based on 

a unique picture feature, the proposed strategy k into consideration the spatial interaction of 

voxels that were next to one another. Using the U-NET+Three parameter logistic 

distribution-based technique, we were able to replicate the situation. According to the 

researchers, the proposed technique method DSC of 97.3%, a sensitivity of 96.5%, and a 

specificity of 94.1% when tested on the LuNa-16 dataset. At long last, this research 

investigates how diverse lung segmentation, juxta pleural nodule inclusion, and pulmonary 

nodule segmentation approaches may be applied to create CAD systems. Other objectives 

include making it possible to conduct research into lung segmentation and automated 

pulmonary nodule segmentation while also improving the power and effectiveness of 

computer-assisted diagnosis of lung cancer, which relies on correct pulmonary nodule 

segmentation to be successful. 
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1. INTRODUCTION

Lung cancer is the leading cause of mortality in the world, 

affecting both men and women equally. According to the 

American Cancer Society, 222,500 new instances of lung 

cancer [1, 2] were diagnosed in 2017 [3], and 155,870 

individuals died as a result of the disease. The survival rate for 

colon cancer is 65.4%, whereas breast cancer has a survival 

rate of 90.35%, and prostate cancer has a survival rate of 

99.6%, which is much lower than the overall survival rate of 

65.4% [4]. It's possible that a lung nodule is an indication of 

lung cancer. Only 16% of cases are discovered in the early 

stages. If these nodules are discovered while they are still in 

their original location, the odds of survival increase from 10% 

to 65-70%. 

Lung cancer is detected and treated with the use of imaging 

methods such as multidetector X-ray computed tomography 

(MDCT) [5]. If you have a CT scanning today, you will get a 

large amount of information. Performing all of this data 

segmentation and analysis by hand is difficult and time-

consuming. It makes the work of the radiologist more 

complicated and time-consuming. Glancing at a large number 

of images can increase the likelihood of missing essential 

clinical criteria, such as abnormalities, was shown in the 

Figure 1. 

Figure 1. Showing the limitations of the normal image-based 

segmentation 
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In order to address this issue, computer-assisted diagnosis 

(CADx) [6] and computer-assisted detection (CADe) have 

been investigated as potential methods of assisting radiologists 

with CT scans while also improving their diagnostic accuracy. 

For the last two decades, researchers from all around the globe 

have been focusing their efforts on strategies to increase the 

accuracy of lung nodule detection. The four major components 

of the CAD/CADe system are shown in Figure 2. 1) The lungs 

are immediately divided into two halves. 2) Selection of 

nodule candidates or division of nodules is two examples of 

nodule division. 3) Nodules and the many forms of nodules. 4) 

It was discovered that the patient had lung cancer. Auto lung 

segmentation is the most critical step in the pre-processing 

stage of the CAD system. This is done prior to the discovery 

or identification of lung nodules. 

 

 
 

Figure 2. Showing the basic block diagram of the CADx 

systems 

 

For lung segmentation, there are two primary goals: to 

reduce the amount of time it takes to do the calculation and to 

ensure that a search only goes to the lung parenchyma by 

making sure the boundaries are extremely well defined. This 

is due in part to the fact that the radio density of the juxta 

pleural nodule is the same as that of the chest region, which 

means that segmentation does not always pick it up on the scan. 

There have been several reports of various methods [7] of 

dividing the lung, but only a handful of them have been shown 

to involve juxta pleural nodules. During the second stage of 

the construction process, basic image processing methods are 

used to identify a variety of nodules in the lung area that have 

been successfully healed. The final step makes use of machine 

learning to determine which objects include nodules and 

which ones do not contain nodules (e.g., segments of airways, 

arteries, or other non-cancerous lesions).  

In order to examine the lung parenchyma, high-resolution 

computer tomography is used (HRCT). A three-dimensional 

depiction of the human thorax is included, as well as high 

spatial and temporal resolutions in both space and time. Apart 

from the fact that it has a three-dimensional form, it provides 

excellent contrast resolution for pulmonary structures and 

surrounding tissue.  

CT imaging is utilized to examine the parenchyma, airways, 

and mechanics of the diaphragm in the lungs. It turns out that 

when CT scanners improve in quality, the frequency of 

volumetric lung studies increases as well. Manual 

segmentation of a large number of CT slices [8] becomes 

impossible as a result of this. Consequently, automated lung 

segmentation is being utilized to distinguish the lungs from the 

rest of the body. 

The Major Contributions of the proposed research work are 

as follows: 

·To develop the algorithm for lung Segmentation and lobe 

volume quantification. 

·To develop automatic segmentation of lungs field with 

various abnormal patterns attached to lung boundary such as 

excavated mass, pleural nodule, etc. 

· To design the lung segmentation algorithm for the 

inclusion of juxta pleural nodules and pulmonary vessels. 

·To design the algorithm for the segmentation of various 

types and shapes of pulmonary nodules. 

 

 

2. RELATED WORKS  

 

Convolutional neural networks are used in the creation of 

UNET [9]. Despite the fact that this network has just 23 layers, 

it performs well. Although it is not as difficult as networks 

with hundreds of layers, it nevertheless requires a significant 

amount of effort. Down- and up-sampling is used extensively 

in a single network environment. During the down-sampling 

step, you may use convolutional and pooling layers to identify 

characteristics in the picture that you want to maintain and 

keep in the final image. 

Deconvolution is used to make the map of features more 

visible by removing some of the details [10]. Depending on 

where you reside, this is referred to as a decoder or an encoder. 

If you utilize a convolution or pooling layer, you will obtain 

feature maps that include varying amounts of information 

from the images with which they are merged, depending on 

the layer you select. They each include a varied quantity of 

information about themselves.  

Following upsampling, a technique known as 

deconvolution is performed to increase the size of the feature 

map. In the next step, the original feature map is blended with 

a down-sampled feature map. This is done in order to recover 

the abstract data that has been lost and to enhance network 

segmentation and segmentation accuracy. 

On a CT image of the lungs, we can observe how the UNET 

network learns about nodules via convolution and pooling of 

information. This implies that a significant amount of spatial 

information is lost. A significant amount of information 

regarding how events will unfold is lost as a consequence of 

sample reductions. People who create up sampled photos do 

not achieve the same clarity as those who create original 

images.  

When all of the aforementioned problems are taken into 

consideration, it is critical to establish temporary UNET 

networks in order to improve the situation even more. Why 

there hasn’t been enough study on how to discover lung cancer 

nodules that have been divided into segments is explained in 

Table 1. 

Researchers [11-20] used an identical data set, but the 

model's robustness was degraded. Because the U-NET could 

not be utilized with new data types, the IOU intersection and 

dice co-efficient index accuracy were unavailable. This 

concept enhances the efficiency of fully linked and multiscale 

conversion systems. The previous models had the following 

main flaws: 

Gradient’s descent fades away as one moves farther from 

the network's error computation and training data output. 

Weakly evolving intermediate stratum models may opt to skip 

using abstract layers altogether. The Following research 

questions were not addressed properly. They are listed as 

follows: 

·Why If the object of interest is not a typical shape or is 

outside the image, the U-Net architecture cannot extract 

information from it. 

·It seems that the suggested DB-NET Models' benefits 

outweigh any disadvantages produced by their intermediary 

layers' fewer steep slopes. These experiments found that DB-

NETs outperform other designs at recognizing small items in 
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pictures. Modeling models that aren't similar or include new 

technology is straightforward and quick. 

·When making technical decisions, all model versions 

must be given the same weight. This is especially true when 

updating or improving current models. Paying attention to the 

specifics while judging a model's technological design is 

crucial. In medicine, biomedical imaging may reveal 

heterochromatin concentrations and synapses in the brain, 

among other things. 

·To correctly distribute light, orientation, and components, 

an algorithm may need to recognize the same item again on a 

very small scale. Convolutional networks may be able to gain 

these traits without giving up any of their existing knowledge. 

However, when compared to other previously evaluated 

models, DB-NET outperformed them with more data. The 

LUNA16 benchmark dataset gave us a wide range of data to 

examine our model. 

 

Table 1. Showing the literature survey and gap in lung cancer classification 

 

Ref 
Research 

Objective 
Approach 

Segmentation 

Technique 

DSC 

(%) 
Outcome and Result Research Gap Dataset 

Split 

(%) 

[11] 

Segmentation 

Method to find 

out the Benign 

and Malignant 

Nodule 

Deep Learning 

Approach- 

CNN-based 
Segmentation 

CNN with 

Overlapped 

subdiaphragmatic 
Space 

92.23% 

To determine how well the model 

performed, we looked at its 

sensitivity and the average 
number of false positives per 

picture in a separate collection of 

photos from the original set 

(mFPI). The training set had 629 

radiographs, whereas the test set 

contained 151 radiographs. The 
training set had 652 nodules and 

159 masses, whereas the test set 

contained 151 nodules and 159 
masses. 

The Model 

failed to produce 

accurate results 

on minimal 

dataset. 

LIDC-

IDRI/ 

LUNA-
16 

70:30 

[12] 

Segmentation 

of the Lung CT 

scan images 

3D-
Segmentation 

Deep Supervision 
architecture 

84.75% 

This work aims to investigate 

lung tumour segmentation 
utilising a two-dimensional DWT 

and a Deeply Supervised 

MultiResUNet model, both of 
which have been developed 

recently. It is necessary to utilise 

the LOTUS dataset, which 
contains 31,247 training samples 

and 4458 testing samples. In 

addition, a Deeply Supervised 

MultiResUNet model is used. A 

combination of deep supervision 

in model design with DWT 
results in a more extensive 

textural analysis that takes into 

consideration information from 
nearby CT slices, which improves 

the results. 

Golden 
Standards of the 

Algorithm was 

not gaining the 

trust 

LIDC-

IDRI/ 
LUNA-

16 

60:40 

[13] 

Lung Cancer 

Segmentation 
on Low-Dose 

Ct scans with 

improvised 
Classifier. 

Deep-learning 

Model CT2Rep 

Segmented related 

Nodule Feature on 
Low Dose CT scans 

92.29% 

Following training, the model 
continues to improve its 

performance as a result of input 

from those who use it. Lung 
cancer lesion segmentation on 

PET/CT images is accomplished 

using FSL, and we use a U-Net 
architecture to modify the weights 

of the models. An online 

supervised learning approach is 

created as a consequence of this, 

which allows for dynamic model 

weight adjustments. 

The Coordinates 

if the images 

were misplaced 
and not 

accurately done. 

LIDC-
IDRI/ 

LUNA-

16 

70:30 

[14] 

Lung Lesion 

benign Tumour 
Segmentation 

with improvised 

U-NET 

CADe for 
increased 

performance of 

Lung Cancer 
Segmentation 

with FSL Model 

Two- Parameter 

Logistic 
Distribution with 

Improvised U-NET 

architecture 

92.68% 

One of the objectives of this 
research was to apply deep 

learning to develop a system that 
could be used to correctly and 

reliably segment lung nodule 

regions in three dimensions. This 
research demonstrated how to 

employ a three-dimensional fully 

connected convolutional network 
with residual unit structures and a 

novel loss function in conjunction 

with a three-dimensional 
convolutional network. 

The main 

disadvantages of 
this model are 

Heavyweight 

architecture. 

LIDC-

IDRI/ 

LUNA-
16 

60:40 

[15] 

3D CT scan 
with improvised 

Fully connected 

CNN 

3D 

Convolutional 

Neural Network 

with Annotated 

images. 

Two- Parameter 

Logistic 

Distribution with 

Fill Connected CNN 

architecture 

96.4% 

When a person has lung cancer, 

he or she may have a variety of 

additional respiratory disorders, 

each with its own set of CT 

imaging results. A deep learning 

The standard 

deviation and 

mean accuracy 

of the model 

were very low. 

LIDC-
IDRI/ 

LUNA-

16 

70:30 
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model with two distinct 
structures: a U-Net and a 

ResNet34 — is being developed 

as part of this project's efforts. 

[16] 

Lung Cancer 

Segmentation 
with Cross – 

Cohort 

Residual U-NET 

with annotated 

images 

Two- Parameter 
Logistic 

Distribution with a 

Residual U-NET 
approach. 

96.58% 

In order to create the images for 

the deep learning model, the 

researchers employed a number 
of image preparation approaches. 

Image resampling, intensity 

normalization, 3D nodular patch 
cutting, and data augmentation 

were some of the techniques used. 

The residual network and the 
atrous spatial pyramid pooling 

module, as well as a 3D 

attentional cascaded residual 
network, were then used to 

construct the final model (ACRU-

Net). 

This work failed 
to explain the 

hidden features 

in the Low Dose 
CT scan images. 

LIDC-

IDRI/ 
LUNA-

16 

70:30 

[17] 

Lung Cancer 

Volumetric 

Segmentation 

Residual U-NET 

with random 

field 

Two- Parameter 

Logistic 

Distribution with a 

cascaded Residual 

U-NET approach. 

95.36% 

Deep learning networks are 
utilized in this approach of 

finding objects via deep learning. 

They beat the best segmentation 

networks, such as the U-net 

network, in terms of overall 
performance. 

The Model 

Prediction and 

AUC curves 

were not golden 

standards. 

LIDC-
IDRI/ 

LUNA-

16 

70:30 

[18] 
Lung Cancer 
Segmentation 

with the CNN 

Residual and 

Separable CNN 

with Shallow 
layers 

Two- Parameter 
Logistic 

Distribution with 

CNN- Residual 
Separable Network 

approach. 

94.56% 

This deep learning technique uses 

deep learning networks to detect 

things. Ensemble methods, 
maximum intensity projection-

based preprocessing, and two 

novel deep learning networks are 
included. In Deep Residual 

Separable Convolutional Neural 

Networks 1 and 2, what occurred 
was: A choice was made. Overall, 

they outperformed the best 

segmentation networks like U-
net. 

The model was 
shown more loss 

when the high-

dose CT scan 
images were 

given as output 

LIDC-

IDRI/ 

LUNA-
16 

70:30 

[19] 

Lung Cancer 
Segmentation 

with the 4D CT 

scans 

Multiplanar U-
NET for high-

dose CT scan 

images. 

Motion Mask 
Segmentation using 

Two Parameter 

Segmentation 

91.56% 

This study demonstrates that it is 

feasible to tackle this issue using 

a lightweight deep-learning 

technique that can be 

implemented on a single machine 
and does not need the collection 

of a large amount of additional 

data or the development of 
complex models. 

Diversity in 

training data is 
missing. 

LIDC-
IDRI/ 

LUNA-

16 

70:30 

[20] 
Lung Cancer 
Segmentation 

on 4D CT scans 

Motion Neural 
Network with 

two parameters 

R-CNN with the 
local motion CT 

scans 

96.89% 

As part of the planned deep 

learning architecture, it is used. In 
this particular instance, the 

motion region convolutional 
neural network is used (R-CNN). 

Annotated 

images with few 

data 
augmentation 

results in the 
diversity of the 

classifier. 

LIDC-

IDRI/ 
LUNA-

16 

70:30 

 

 

3. PROPOSED METHODOLOGY  

 

3.1 Three logistic distribution 

 

An effective methodology for estimating the parameters of 

mixture distribution is utilizing the Expectation-Maximization 

algorithm given by Turner et al. [21]. The efficiency of the EM 

algorithm depends on the initial values of the parameters and 

the number of mixture components in the model. Yang et al. 

[22] had utilized the K-means algorithm for obtaining initial 

values of the model parameters.  the performance comparison 

has been taken by the k-means algorithm and hierarchical 

clustering algorithm; it is required to assign an initial value to 

the number of image regions. To overcome this disadvantage 

the hierarchal clustering algorithm is used for obtaining the 

number of components in the mixture model and initializing 

the model parameters. In this paper it is assumed that the pixel 

intensities of the image regions follow a logistic type 

distribution based on three parameters as a result, the whole 

image is considered by a k-component mixture with logistic 

type distribution which was based on three parameters. 

The probability distribution function (P.D.F) of the current 

model is given by: 

 

𝑓(𝑧, 𝛽, 𝜎2) =

[
3

(3𝑝 + 𝜋2)
] [𝑝 + (

𝑧 − 𝛽
𝜎

)
2

] 𝑒
−(

𝑧−𝛽
𝜎

)

𝜎 [1 + 𝑒
−(

𝑧−𝛽
𝜎

)
]

2  (1) 

 

where, -∞<z<∞, -∞<β<∞, p≥4. 
The frequency curves associated with logistic type 

distribution for three parameters are shown in the Figure 3. 
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Figure 3. Three parameter-based frequency curves of logistic 

type distribution 

 

The distribution function of the current model with β and 

the model is symmetric as: 

 
𝐹(𝑍)

=
3𝑒

−(
𝑧−𝛽
𝜎

)

𝜎2(12 + 𝜋2)

[[4 + (
𝑧 − 𝛽

𝜎
)

2

] [2 (
𝑧 − 𝛽

𝜎
) − 1] 𝑒

−(
𝑧−𝛽
𝜎 )

2

− [(
𝑧 − 𝛽

𝜎
) − 1]

2

]

[1 + 𝑒
−(

𝑧−𝛽
𝜎

)
2

]

2  
(2) 

 

The probability density function (p.d.f) of the pixel 

intensities is of the form: 

 

𝑓(𝑧, 𝛽, 𝜎2, 𝑥) =

[
3

(3𝑥 + 𝜋2)
] [𝑥 + (

𝑧 − 𝛽
𝜎

)
2

] 𝑒
−(

𝑧−𝛽
𝜎 )

𝜎 [1 + 𝑒
−(

𝑧−𝛽
𝜎 )

]

2  (3) 

 

where, -∞<z<∞, -∞<β<∞, x≥4, σ2>0. 

 

3.1.1 Using the EM algorithm, the estimation of model 

parameters 

For Expectation-Maximization (EM) algorithm, the updated 

equations of the model parameters the estimation error after 

calculation was 0.001. It’s an unbiased estimation. 

Three parameter logistic type distribution: 

 
𝑙𝑜𝑔 𝐿 (𝜃)

= ∑𝑙𝑜𝑔

[
 
 
 
 

∑𝛼𝑖

[
3

(3𝑝 + 𝜋2)
] [𝑝 + (

𝑥𝑠 − 𝜇𝑖

𝜎𝑖
)
2

] 𝑒
−(

𝑥𝑠−𝜇𝑖
𝜎𝑖

)

𝜎𝑖 [1 + 𝑒
−(

𝑥𝑠−𝜇𝑖
𝜎𝑖

)
]

2

𝑚

𝑖=1

]
 
 
 
 𝑁

𝑆=1

 (4) 

 

The process of estimating the likelihood function on sample 

observations is considered the first step of the EM algorithm 

and is obtained as: 

E-STEP: 

In the expectation (E) step, the expectation value of log L(θ) 

concerning the initial parameter vector θ(0) is: 

 

𝑄(𝜃, 𝜃(0)) = 𝐸𝜃(0)[𝑙𝑜𝑔 𝐿 (𝜃)/𝑥] (5) 

 

This implies: 

 

𝑙𝑜𝑔 𝐿 (𝜃) = ∑𝑙𝑜𝑔 (∑𝛼(𝑙)
𝑖𝑓𝑖(𝑥𝑠, 𝜃

(𝑙))

𝑘

𝑖=1

)

𝑁

𝑆=1

 (6) 

 

The provisional likelihood which goes to region ‘k’ is: 

 

𝑃𝑘(𝑥𝑠 , 𝜃
(𝑙)) = [

𝛼𝑘
(𝑙)𝑓𝑘(𝑥𝑠,𝜃

(𝑙))

𝑝𝑖(𝑥𝑠 , 𝜃
(𝑙))

] (7) 

𝑝𝑘(𝑥𝑠, 𝜃
(𝑙)) = [

𝛼𝑘
(𝑙)𝑓𝑘(𝑥𝑠,𝜃

(𝑙))

∑ 𝛼𝑖
(𝑙)𝑓𝑖(𝑥𝑠 , 𝜃

(𝑙))𝑘
𝑖=1

] (8) 

 

Therefore, for three parameter logistic type distribution: 

 

𝑓𝑖(𝑥𝑠, 𝜃
(𝑙)) =

[
3

(3𝑝 + 𝜋2)
] [𝑝 + (

𝑥𝑠 − 𝜇𝑖
(𝑙)

𝜎(𝑙) )
2

] 𝑒
−(

𝑥𝑠−𝜇𝑖
(𝑙)

𝜎𝑖
(𝑙) )

𝜎𝑖
(𝑙) [1 + 𝑒

−(
𝑥𝑠−𝜇𝑖

(𝑙)

𝜎𝑖
(𝑙) )

]

2  (9) 

 

M-STEP: 

To get the model parameters estimation, one should 

increase Q(θ, θ(l)) such that ∑𝛼𝑖 = 1. This estimation could be 

achieved by using the first order Lagrange type function: 

 

𝐹 = [𝐸(𝑙𝑜𝑔 𝐿 (𝜃(𝑙))) + 𝛽 (1 − ∑𝛼𝑖
(𝑙)

𝑘

𝑖=1

)] (10) 

 

The updated equations of αi: 

To find the expression for αi, we solve the following 

equation: 

 
𝜕𝐹

𝜕𝛼𝑖

= 0 

∑
1

𝛼𝑖

𝑁

𝑖=1

𝑃𝑖(𝑥𝑠 , 𝜃
(𝑙)) + 𝛽 = 0 

(11) 

 

After adding on both sides, β=-N. 

Therefore, 

 

𝛼𝑖 =
1

𝑁
∑𝑃𝑖

𝑁

𝑠=1

(𝑥𝑠, 𝜃
(𝑙)) (12) 

 

The updated equations of αi for (l+1)th iteration is: 

 

𝛼𝑖
(𝑙+1) =

1

𝑁
∑ 𝑃𝑖

𝑁

𝑠=1

(𝑥𝑠, 𝜃
(𝑙)) (13) 

 

This implies: 

 

𝛼𝑙
(𝑙+1) =

1

𝑁
∑ [

𝛼𝑙
(𝑙)𝑓𝑙(𝑥𝑠,𝜃

(𝑙))

∑ 𝛼𝑖
(𝑙)𝑓𝑖(𝑥𝑠, 𝜃

(𝑙))𝑘
𝑖=1

]

𝑁

𝑠=1

 (14) 

 

The updated equations of μi:

 

For Two parameter logistic type distribution: 

By applying the derivative with respect to μi, we have 

 

𝜕

𝜕𝛽𝑖

[
 
 
 
 

∑∑𝑃𝑖(𝑥𝑠., 𝜃
𝑙) 𝑙𝑜𝑔 𝛼𝑖

[
3

12 + 𝜋2] [4 + (
𝑥𝑠 − 𝛽𝑖

𝜎𝑖
)

2

] 𝑒
−(

𝑥𝑠−𝛽𝑖
𝜎𝑖

)

𝜎𝑖 [1 + 𝑒
−(

𝑥𝑠−𝛽𝑖
𝜎𝑖

)
2

]

𝐾

𝑖=1

𝑁

𝑠=1

]
 
 
 
 

= 0 

(15) 

 

𝜕

𝜕𝛽𝑖

[
 
 
 
 

∑∑𝑃𝑖(𝑧𝑠., 𝜃
𝑙) 𝑙𝑜𝑔𝛼𝑖

[
3

12 + 𝜋2] [4 + (
𝑧𝑠 − 𝛽𝑖

𝜎𝑖
)

2

] 𝑒
−(

𝑧𝑠−𝛽𝑖
𝜎𝑖

)

𝜎𝑖 [1 + 𝑒
−(

𝑧𝑠−𝛽𝑖
𝜎𝑖

)
2

]

𝐾

𝑖=1

𝑁

𝑠=1

]
 
 
 
 

= 0 

(16) 

 

This implies: 
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∑ 𝑃𝑖

𝑁

𝑠=1

(𝑥𝑠 , 𝜃
𝑙)

[
 
 
 
 
 

[
 
 
 
 2 (

𝑧𝑠 − 𝛽𝑖

𝜎𝑖
) (−

1
𝜎𝑖

)

[4 + (
𝑧𝑠 − 𝛽𝑖

𝜎𝑖
)

2

]
]
 
 
 
 

+ [
1

𝜎𝑖

] −

[
 
 
 
 

𝑒
−(

𝑧𝑠−𝛽𝑖
𝜎𝑖

)
2

2

𝜎𝑖 (1 + 𝑒
−(

𝑧𝑠−𝛽𝑖
𝜎𝑖

)
2

)
]
 
 
 
 

]
 
 
 
 
 

= 0 (17) 

 

Since μi appears in only one region, i=1, 2, 3, ……, k. 

(regions). 

For Three parameter logistic type distribution: 

 

𝜕

𝜕𝛽𝑖

[
 
 
 
 

∑∑𝑃𝑖(𝑧𝑠., 𝜃
𝑙) 𝑙𝑜𝑔

[
 
 
 
 

𝛼𝑖

[
3

3𝑝 + 𝜋2] [𝑝 + (
𝑧𝑠 − 𝛽𝑖

𝜎𝑖
)

2

] 𝑒
−(

𝑧𝑠−𝛽𝑖
𝜎𝑖

)

𝜎𝑖 [1 + 𝑒
−(

𝑧𝑠−𝛽𝑖
𝜎𝑖

)
]

2

]
 
 
 
 𝐾

𝑖=1

𝑁

𝑠=1

]
 
 
 
 

= 0 

(18) 

 

Finally: 

For Three parameter logistic type distribution: 

 
𝜇𝑖

(𝑙+1)

=

∑
𝑃𝑖(𝑧, 𝜃

(𝑙))(2𝑦𝑠)

(𝜎𝑖
2)(𝑙) [𝑝 + (

𝑧𝑠 − 𝛽
𝑖
(𝑙)

𝜎𝑖
(𝑙) )

2

]

𝑛
𝑠=1 − ∑

𝑃𝑖(𝑧𝑠., 𝜃
(𝑙))

𝜎𝑖
(𝑙)

𝑛
𝑠=1 + ∑

2𝑃𝑖(𝑧𝑠., 𝜃
(𝑙))

𝜎𝑖
(𝑙) [1 + 𝑒

(
𝑧𝑠−𝛽

𝑖
(𝑙)

𝜎
𝑖
(𝑙) )

]

𝑛
𝑠=1

2∑
𝑃𝑖(𝑧𝑠., 𝜃

(𝑙))

(𝜎𝑖
2)(𝑙) [𝑝 + (

𝑧𝑠 − 𝛽𝑖
(𝑙)

𝜎𝑖
(𝑙) )

2

]

𝑛
𝑠=1

 
(19) 

 

The updated equation of 𝝈𝒊
𝟐: 

For updating 𝜎𝑖
2 we differentiate 𝑄(𝜃, 𝜃(𝑙)), 

That is 
𝜕

𝜕𝜎2 (𝑄(𝜃, 𝜃(𝑙))) = 0
 

This implies 𝐸 [
𝜕

𝜕𝜎2 (𝑙𝑜𝑔 𝐿 (𝜃, 𝜃(𝑙)))] = 0 

 

𝜕

𝜕𝜎𝑖
2

[
 
 
 
 
 

∑∑𝑃𝑖(𝑥𝑠., 𝜃
𝑙) 𝑙𝑜𝑔𝛼𝑖

[
3

12 + 𝜋2] [4 + (
𝑧𝑠 − 𝛽𝑖

𝜎𝑖
)

2

] 𝑒
−(

𝑧−𝛽𝑖
𝜎𝑖

)

𝜎𝑖 [1 + 𝑒
−(

𝑧𝑠−𝛽𝑖
𝜎𝑖

)
2

]

𝐾

𝑖=1

𝑁

𝑠=1

]
 
 
 
 
 

= 0 

(20) 

 

This implies: 

 

∑𝑝𝑖

𝑁

𝑠=1

(𝑧𝑠, 𝜃(𝑙)) [
−(𝑧𝑠 − 𝛽𝑖)

2𝜎𝑖
2

𝜎𝑖
4(4𝜎𝑖

4 + (𝑧𝑠 − 𝛽𝑖)
2
]

= ∑𝑝𝑖

𝑁

𝑠=1

(𝑧𝑠 , 𝜃
𝑙)

[
 
 
 
 
 

[
−(𝑧𝑠 − 𝛽𝑖)

𝜎𝑖
3

] + [
1

𝜎𝑖
2
]

+

[
 
 
 
 

(𝑧𝑠 − 𝛽𝑖)
2

𝜎𝑖
4 (1 + 𝑒

(
𝑧𝑠−𝛽𝑖

𝜎𝑖
)
2

)
]
 
 
 
 

]
 
 
 
 
 

= 0 

(21) 

 

This implies: 

 

∑𝑝𝑖

𝑁

𝑠=1

(𝑧𝑠, 𝜃
(𝑙)) [

(𝑧𝑠 − 𝛽𝑖)
2𝜎𝑖

2

𝜎𝑖
4(4𝜎𝑖

4 + (𝑧𝑠 − 𝛽𝑖)
2
]

= ∑𝑝𝑖

𝑁

𝑠=1

(𝑧𝑠, 𝜃
𝑙)

[
 
 
 
 
 

[
(𝑧𝑠 − 𝛽𝑖)

𝜎𝑖
3

] − [
1

𝜎𝑖
2
]

−

[
 
 
 
 

(𝑧𝑠 − 𝛽𝑖)
2

𝜎𝑖
4 (1 + 𝑒

(
𝑧𝑠−𝛽𝑖

𝜎𝑖
)
2

)
]
 
 
 
 

]
 
 
 
 
 

= 0 

(22) 

 

After simplification the above equation can written as: 

 

𝜎𝑖
2 =

∑

[
 
 
 
 
 

[
(𝑧𝑠 − 𝛽𝑖)

𝜎𝑖
3 ] − [

1
𝜎𝑖

2] −

[
 
 
 
 

(𝑧𝑠 − 𝛽𝑖)
2

𝜎𝑖
4 (1 + 𝑒

(
𝑧𝑠−𝛽𝑖

𝜎𝑖
)
2

)
]
 
 
 
 

]
 
 
 
 
 

𝑝𝑖(𝑧𝑠, 𝜃
(𝑙))𝑁

𝑠=1

∑
(𝑧𝑠 − 𝛽𝑖)𝑝𝑖(𝑧𝑠, 𝜃

(𝑙))
𝜎𝑖

4(4𝜎𝑖
2 + (𝑧𝑠 − 𝛽𝑖)2)

𝑁
𝑠=1

 

(23) 

 

For Three parameter logistic type distribution: 

 

𝜕

𝜕𝜎𝑖
2

[
 
 
 
 

∑∑𝑃𝑖(𝑧𝑠., 𝜃
𝑙) 𝑙𝑜𝑔𝛼𝑖

[
3

3𝑝 + 𝜋2] [𝑝 + (
𝑧𝑠 − 𝛽𝑖

𝜎𝑖
)

2

] 𝑒
−(

𝑧𝑠−𝛽𝑖
𝜎𝑖

)

𝜎𝑖 [1 + 𝑒
−(

𝑧𝑠−𝛽𝑖
𝜎𝑖

)
]

2

𝐾

𝑖=1

𝑁

𝑠=1

]
 
 
 
 

= 0 

𝜎𝑖
2(𝑙+1)

=

∑
𝑃𝑖(𝑧𝑠., 𝜃

(𝑙))(𝑧𝑠 − 𝛽𝑖
(𝑙+1))

2𝜎𝑖
3(𝑙)

𝑁
𝑠=1 − ∑

𝑃𝑖(𝑧𝑠., 𝜃
(𝑙))(𝑧𝑠 − 𝛽𝑖

(𝑙+1))

𝜎𝑖
3(𝑙) [1 + 𝑒

(𝑧𝑠−𝛽𝑖)
𝜎𝑖 ]

𝑁
𝑠=1 − ∑

𝑃𝑖(𝑧𝑠., 𝜃
(𝑙))

2𝜎𝑖
2(𝑙)

𝑁
𝑠=1

∑
𝑃𝑖(𝑧𝑠., 𝜃

(𝑙))(𝑧𝑠 − 𝛽𝑖
(𝑙+1))

2

𝜎𝑖
4(𝑙)

[𝑝𝜎𝑖
2(𝑙)

+ (𝑧𝑠 − 𝛽𝑖
(𝑙+1))

2
]

𝑁
𝑠=1

 

𝑝𝑖(𝑧𝑠 , 𝜃
(𝑙)) = [

𝛼𝑖
(𝑙+1)𝑓𝑖(𝑧𝑠,𝛽𝑖

(𝑙+1), 𝜎𝑖
2(𝑙)

)

∑ 𝛼𝑖
(𝑙+1)𝑓𝑖(𝑧𝑠 , 𝛽𝑖

(𝑙+1), 𝜎𝑖
(𝑙))𝑘

𝑖=1

] 

(24) 

 

3.2 Image dataset description 

 

There are thoracic CT scans in the Lung Image Database 

Consortium image collection (LIDC-IDRI) [23] that have been 

annotated with lesions for the diagnosis and screening of lung 

cancer that may be used for diagnostic and screening purposes. 

Online access to one of the world's top resources for assistance 

with computer-assisted diagnostic (CAD) techniques for lung 

cancer detection and diagnosis is accessible to anybody in the 

globe. Together with eight medical imaging firms, seven 

academic institutions developed this data collection, which has 

1018 occurrences. For each individual, images from a thoracic 

CT scan are shown alongside an XML file containing the 

findings of a two-phase image annotation system created by 

four thoracic radiologists over a two-year period are also 

displayed with the images. This is exactly what occurred 

during the initial blinded-reading phase.  

Each CT image was reviewed by a radiology specialist who 

categorised the lesions as "nodule > or =3 mm," "nodule 3 

mm," or "non-nodule > or =3 mm." Each radiologist reviewed 

their own markings, as well as the marks of the other three 

radiologists, before reaching a final judgement during the 

unblinded-read part of the procedure. The goal of this method 

was to discover as many lung nodules as feasible on each CT 

scan without requiring consensus from the team. 

The location and degree of malignancy of lung nodules in 

the patient's would be determined in this research. The XML 

file containing information on the lung nodules would be 

examined by four radiologists in turn. Radiologists may do this 

procedure in one of five ways. 

 

3.3 Data augmentation 

 

An artificial neural network (ANN) [24] must be taught 

using a large amount of training data. Overfitting may occur if 

just a little quantity of training data is included in the model. 

Because of a scarcity of photos, the training data was supplied 

with images that had been altered somewhat. This was done in 

order to prevent overfitting. 
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Figure 4. Showing the data augmentation on LuNa-16 

dataset images before and after segmentation 

 

Although the orientation of the microscope images does not 

vary, the sharpness of the target cell varies depending on 

where the microscope's focus plane is located. As consequence, 

by rotating, inverting, and filtering the image, we were able to 

extract additional information from it.  

This was done in order to ensure that the number of better 

images for each of the three illness groups was equal for all 

three disease groups. As a consequence, there were twice as 

many images included in the final version as there were in the 

initial version. With a Gaussian filter with a standard deviation 

of three pixels, the images were enhanced, as was the edges 

with a convolutional edge enhancement filter that had a central 

weight of 5.4 and an 8-surrounding weight of 55% and 

improved the edges' appearance was shown in the Figure 4. 

 

3.4 Network model architecture 

 

Pre-processing: The automatic lung segmentation approach 

is seen in Figure 5. In this stage, four critical processes are 

carried out: trachea and bronchus removal; optimum 

thresholding; connected component labelling; as well as 

separation of the left and right lungs. The procedure is detailed 

in the next section. 

 

 
 

Figure 5. The block diagram of the proposed model 
 

The lung parenchyma, trachea, and bronchial tree are all 

visible on the first CT scan of the lung. Fat, muscle, and bones 

may be seen on the exterior of the lung's anatomy. There are 

also nodules on the exterior of the lungs, which are called 

pulmonary nodules. In order to remove non-parenchymal 

tissues from a CT image, lung field segmentation must be 

performed. It is divided into many phases, which are as 

follows: The trachea and bronchi are removed by the use of a 

method known as region-growing. This is accomplished when 

the lung parenchyma has been separated from the surrounding 

architecture. After the left and right lungs have been put 

together, there are still certain pieces that need to be removed 

from the body. 

 
 

Figure 6. The flow of the proposed architecture on the LuNa-

16 dataset 
 

When separating low density regions such as the lungs and 

airways from high density areas such as the chest, bones, fat, 

muscles, and pulmonary nodules (which have a high density 

of their own), the term "optimal thresholding" is used (non-

body voxels). This technique is referred to as "optimal 

thresholding" (body-voxels). As seen in Figure 6, lung CT 

imaging reveals zones of low and high density. Instead of 

using a fixed threshold value, we employed optimal 

thresholding, which automatically determines the appropriate 

threshold for segmenting the data. This method significantly 

simplifies the task of accounting for minor variations in tissue 

density that may exist across different individuals. In order to 

determine the appropriate threshold, iterative approaches are 

used. To get things going, we employed repeated thresholding. 

If it was assumed that they were unsure of where to position 

the body voxels, this would be incorrect. There are no voxels 

that are not part of the body in this image. All of the other 

voxels in the image are part of the body. When the final run is 

completed, it displays the precise position of body and non-

body voxels. Suppose that the threshold value is T at step t, 

which is what we'll state in the next paragraph. Initially, this 

threshold was utilised to distinguish between non-body and 

body voxels in the scene was shown in the Figure 7. 

 

 
 

Figure 7. The proposed architecture for segmentation of bio-

medical images 
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3.5 Loss function of proposed network model 

 

The loss function is as follows: 

 

𝐶(𝑤, 𝑏) =
1

2𝑛
∑||𝑦(𝑥) − ||2

𝑥

+
1

2𝑛
𝜆 ∑𝑊2

𝑤

 (25) 

 

where, C, w, b, n, x, and an are the cost functions. It is used to 

do the back propagation process, which lowers the discrepancy 

between anticipated and actual values, hence increasing the 

accuracy of the process. The DNN is used to perform the back 

propagation [25] process. It is critical not to overtrain during 

the training phase, which is why the last item of the loss 

function divides the sum of all weights by 2n, which is equal 

to 2. Another method of preventing overfitting is to drop out. 

Some neurons are randomly hidden before back propagation, 

and the parameters are not changed as a result of the masked 

neurons. In order for the DNN to handle a large amount of data, 

it also requires a large amount of memory. This is due to the 

fact that the DNN requires a large amount of data. As a result, 

when a min batch is executed, a back propagation is carried 

out in order to allow for more rapid parameter changes. The 

activation function of the neural network is known as Leaky 

ReLU, and it is responsible for helping it simulate objects that 

are not straight lines. The activation function of the ReLU is 

represented by the following mathematical formula. 
 

𝑦 = {
𝑥

𝑜
𝑖𝑓𝑥 > 0; 𝑥 < 0 (26) 

 

 
 

Figure 8. The loss function of the proposed classifier 

 

In the example below, x represents the outcome of priority-

weighted multiplication and paranoid addition, while y 

represents the output of an activation function, as indicated in 

the Figure 8. If x is less than zero, the answer is zero; if x is 

more than zero, the answer is one. Therefore, ReLU is capable 

of resolving the issue of the sigmoid activation function's 

gradient [26]. Weights cannot be modified indefinitely, 

however, since training is always being updated, which is 

referred to as "neuronal death" in the scientific community. 

The output of ReLU, on the other hand, is larger than zero, 

indicating that the output of the neural network has been 

modified. The usage of leaky ReLUs might be utilised to 

overcome the concerns described above. The activation 

function for the Leaky ReLU is represented by the following 

formula. 

 

3.6 Activation function 

 

An activation function is used by a Neural Network to take 

use of the concept of non-linearity. In order for the network to 

be properly trained and evaluated, this function must be used. 

Over the years, a large number of activation functions have 

been developed, but only a small number of them are actually 

employed in the majority of situations. ReLU, TanH (Tan 

Hyperbolic), Sigmoid, Leaky ReLU, and Swish are examples 

of such algorithms [27]. 

This work introduces a novel activation function, denoted 

by the letters Mish. Mish may be calculated using the formula 

f(x)=softplus(x) tanh. In a wide range of various kinds of deep 

networks and difficult datasets, the researchers discovered that 

Mish beats both ReLU and Swish, as well as other well-known 

activation functions, according to the findings. 

Squeeze Excite Net-18's network with Mish performed 

better than the network with Swish and ReLU when it came to 

the classification test for the CIFAR 100 classification. 

Because Mish and Swish are so similar, it is simple for 

researchers and developers to include Mish into their Neural 

Network Models. Mish also performs better and is simpler to 

set together than other options. 

 

 
 

Figure 9. Mish activation performance with respective to the 

ReLu 

 

Mish's characteristics, such as being unbounded above and 

below, smooth, and nonmonotonic, all contribute to his 

superior performance when compared to other activation 

functions. As a result of the wide variety of training conditions 

available, it is difficult to determine why one activation 

function performs better than another, Figure 9 depicts a large 

number of activation functions. The graphs of Mish activation 

are shown next to them. 

 

 
 

Figure 10. The performance of the MISH activation with 

respective to other activation functions 

 

For example, as seen in Figure 10, owing of Mish's non-

monotonic property, tiny negative inputs are maintained as 
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negative outputs, which improves the expression and gradient 

flow. Due to the fact that the order of continuity of Mish is 

infinite, it has a significant advantage over ReLU, which has 

an order of continuity of 0. Due to this, ReLU cannot be 

continuously differentiable, which may make gradient-based 

optimization more challenging for those that employ it. 

 

 
 

Figure 11. The sharp transition between the ReLU and 

MISH 

 

Due to the fact that Mish is a smooth function, it is easy to 

optimise and generalise, which is why the results became 

better with time. To determine how well ReLU, Swish, and 

Mish performed, the output landscape of a five-layer, 

randomly-initialized neural network was examined for each of 

them. In Figure 11, you can see how rapidly the scalar 

magnitudes for ReLU coordinates shift from Swish and Mish 

to the current figure. Because of this, a network that is simpler 

to regulate has smoother transitions, which in turn results in 

loss functions that are smoother. This makes it simpler to 

generalise the network, which is why Mish performs better 

than ReLU in several domains compared to ReLU. The 

landscapes of Mish and Swish, on the other hand, are very 

similar in this regard. 

 

 

4. RESULTS AND DISCUSSIONS 

 

Additionally, complementary labelling is used in U-Net 

training. Two-dimensional data should be treated similarly to 

one-dimensional data. The model seeks to eliminate as many 

labelling mistakes as feasible in both directions. By 

comparison, the mass of each pixel decreases with time. 

Engaging with them accomplishes the two-fold objective. 

In Table 2, we compare the results of numerous approaches 

on our test data with and without pre-processing (with CLAHE, 

wiener filter, and ROI segmentation). The table's sensitivity 

improves from 90% to 91% after pre-processing, and the dice 

coefficient increases from 91% to 92%.  

This study examines a variety of labeling strategies, both 

monolithic and hybrid. The term "mono" refers to a single 

label input, while "hybrid" refers to a single label input with 

either a positive or negative output (complementary labeling) 

(complementary labeling). Regardless matter whether the 

model is trained on positive or negative ground truth, the 

output can never be better than the mono input. 

Complementary labeling seems to be ineffective when dealing 

with large data sets. 

This research examines data from a variety of sources and 

includes 472 and 50 occurrences, respectively. 

Complementary labeling and pre-processing, as demonstrated 

in Table 3, outperform mono input in the majority of cases. On 

the other hand, complementary labeling is ineffective in the 

absence of pre-processing.  

When dealing with little amounts of data, complementary 

labeling may be quite beneficial. As a result, this research 

examines the viability of labeling enhancement. Hybrid 

negatives are preferred over mono-input positives because 

smaller data volumes are more sensitive to hybrid negatives. 

Positive mono outputs provide a value of 90%, whereas 

negative hybrid inputs produce a value of 92% and the output 

of the results can be seen in Figure 12. If the data set is 

insufficient, more labels may be necessary to round. 

 

 
 

Figure 12. The ground truth prediction before segmentation 

and after segmentation 

 

Table 2. The evaluation report of the different lung nodule 

semantic segmentation with comparison to our proposed 

algorithm 

 

Evaluation Jiao et al. [7] 

Two-

Parameter 

U-NET 

Model 

Three-Parameter 

U-NET Model 

Dice 

coefficient 
95.67%  97.3% 

Confusion 

matrix 

Accuracy:95.67% Accuracy: Accuracy:97.3% 
Sensitivity:93.45% Sensitivity: Sensitivity:96.5% 

Specificity:92.15% Specificity: Specificity:94.1% 

 

Table 3. Valuation of the different semantic lung nodule 

segmentation with comparison to our proposed algorithm 

 

Valuation 
Three-Parameter U-NET 

Model 

Two-

Parameter U-

NET Model 

Dice coefficient 97.3%  

Confusion matrix 

Accuracy:97.3% Accuracy: 

Sensitivity:96.5% Sensitivity: 
Specificity:94.1% Specificity: 

 

Table 4. The evaluation of the lung nodule semantic 

segmentation on a small% age of the LUNA-16 images 

 

Evaluation 
Eali et al. 

[10] 

Two-

Parameter U-

NET Model 

Three-Parameter 

U-NET Model 

Dice 
coefficient 

96.15%  97.3% 

Confusion 

matrix 

Accuracy: 

95.15% 
Accuracy: Accuracy:97.3% 

Sensitivity: 

96.23% 
Sensitivity: Sensitivity:96.5% 

Specificity: 
95.15% 

Specificity: Specificity:94.1% 

 

The U-NET algorithm for the lung tumor segmentation 

model has been implemented in TensorFlow and tested its 

efficiency for image segmentation. The LUNA-16 images are 

considered for image segmentation. The performance of both 
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two-parameter and three-parameter logistic type distributions 

was shown in the Table 4 and Table 5 respectively. 

 

Table 5. The valuation of the lung nodule semantic 

segmentation on a small% age of the LUNA-16 images 

 

Evaluation 
Rao et al. 

[24] 

Two-

Parameter U-

NET Model 

Three-Parameter 

U-NET Model 

Dice 
Coefficient 

96.15%  97.3% 

Confusion 

matrix 

Accuracy: 

95.15% 
Accuracy: Accuracy:97.3% 

Sensitivity: 

96.23% 
Sensitivity: Sensitivity:96.5% 

Specificity: 
95.15% 

Specificity: Specificity:94.1% 

 

 
 

Figure 13. Example of the pixel intensities of the lung 

nodule CT scan images of benign and malignant nodules 

The histograms of the pixel intensities of the CT scan 

images are shown in Figure 13. 

From the Table 6, it was very clear that our classifier 

SENETS-Grad-Cam++ has outperformed remaining all the 

classifiers in terms of the performance metrics like AUC and 

accuracy on LUNA 16 benchmark dataset. 

From the Table 7, it was clearly evident that our method was 

performed very well with few samples size from LUNA 16 

dataset. The results clearly shows that out proposed model and 

method are good at classifying odd benign and Malignant 

tumours was shown in the Figure 14. As, a result the model 

has achieved a trust gain when compared with various others 

methods. 

 

 
 

Figure 14. The proposed classifier on LuNa-16 dataset. 

Second column showing the original image, third column 

showing the lung lode, and last two is the segmented image 

 

Table 6. Evaluation of proposed with other procedures based on handcrafted structures 

 
Author’s Year Features Classifier Database Samples AUC Accuracy 

Gao et al. [5] 2022 Intrinsic 3D-CNN LIDC 87 95.57% 95.53% 

Joshua et al. [6] 2022 Wrapper CNN LIDC 1407 - 92.20% 

Jiao et al. [7] 2022 Filter Methods ResNet-19 LIDC 1407 - 90.68% 

Krishnamacharya et al. [8] 2022 Intrinsic LSTM LIDC 1179 86.69% 79.35% 

Li et al. [9] 2022 Wrapper DCNN LIDC 160 - 94.89% 

Lieanto et al. [11] 2023 Intrinsic CNN LIDC 1366 92.34% 91.13% 

Liu et al. [12] 2022 Filter Methods ResNet-16 LIDC 572 65.56% 91.13% 

Qiu et al. [14] 2022 Intrinsic MD-CNN LIDC/LUNA16 1201 96.64% 97.08% 

Proposed Model U-NET with Three Parameters Logistic LIDC/LUNA16 1506 96.89% 97.89% 

 

Table 7. Assessment of the proposed methods with other approaches based on deep learning topographies 

 
Authors Year Method Database Samples AUC Accuracy 

Rao et al. [15] 2022 Convolutional Neural Network LIDC 2619 91.45% 90.15% 

Seitz et al. [16] 2022 Deep CNN with Autoencoders LIDC 487 77.89% - 

Son et al. [17] 2022 CNN with Gradient Descent LIDC 890 96.58% 90.91% 

Joshua et al. [18] 2022 Generative Adversarial Networks+CNN LIDC 2889 95.67% 93.85% 

Tang et al. [19] 2022 CNN with Self Organizing Maps LIDC 1200 - 91.44% 

Rao et al. [24] 2022 Recurrent Neural Networks LIDC 60 94.40% 90.58% 

Bhattacharyya et al. [27] 2022 RNN + GANs LUNA16 1230 96.64% 97.08% 

Proposed Model U-NET with Three Parameters Logistic LuNa-16 1506 96.89% 97.89% 

 

 

5. CONCLUSIONS 

 

For the purposes of this research, we used improvised U-

NET and limited EM with Logistic type distribution for the 

(U-NET+three parameter logistic distribution) to make it 

simple to distinguish between various portions of the lung field. 

It makes use of the spatial interaction of neighbouring voxels 

to create images that are visually distinct. This approach was 

used to mimic the U-NET+Three parameter logistic 

distribution algorith, the hierarchal clustering algorithm is 
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used to obtain the number of components in the mixture model 

and initializem, which has two parameters. Two parameter 

type distribution is utilised to segregate lung and chest voxels 

from one another in the H matrix using the U-NET+Three 

parameter logistic distribution technique and the U-

NET+Three parameter logistic distribution method. When we 

compared our approach to four other lung segmentation 

methods, we discovered that ours was the most successful. We 

employed 40 patients from two separate datasets to evaluate 

this. In terms of DSC performance, the findings demonstrate 

that the suggested technique outperforms the other strategies 

by a significant margin. Current evidence suggests that the 

approach recommended works effectively for simple to 

medium-sized situations Our procedure, on the other hand, 

may not be effective if the lungs are really ill. Our next 

research project will look at how to create algorithms that can 

distinguish between extremely good and very awful CT scans 

images. 

 

 

6. FUTURE WORK 

 

The assessment performed in this research enables for 

further development of the concepts identified in this study, 

which may be used to the construction of a high-accuracy 

CAD system. Based on this research, it is possible that future 

research will go the following routes. 

·In order to increase the accuracy and robustness of this 

tool's classification of all other forms of lung nodules in the 

future, we will seek to improve its accuracy and robustness for 

all other types of nodules. 

·To determine if the suggested approach can be utilised as 

a therapy, it will be evaluated on a variety of datasets in the 

near future. 

·In the future, it will be able to classify nodules according 

to their characteristics. This will be included into the 

framework for segmenting lung nodules. 

·To devise a method of dividing lung nodules of varying 

shapes and sizes into smaller pieces. Research and 

development of an automated technology to assist radiologists 

in the detection and screening for lung cancer. 

· Interstitial lung disease, pleural effusions, and 

consolidations are all examples of lung illnesses that might 

occur in the future. The data could be used to forecast when 

these diseases would occur. 
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