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The recent reports of the World Health Organization showed that a huge extent of the 

population below 55 years has become much prone to cardiac disease, and the death 

percentage has increased caused by various cardio vascular diseases (CVD). Moreover, in 

the Covid-19 pandemic situation, the people suffering from heart disease were found 

severely vulnerable to viral infections, which proved to be a major cause of increased death 

percentage. The CVD could be caused by dysfunction of heart valves which could end up 

with cardiac arrest. The prime method for early-stage detection of the heart valve 

dysfunction is analysis of major heart sounds occurring in a cardiac cycle. The proposed 

work dealt with exploration of S1 and S2, which are supposed to be prime sounds of 

Phonocardiogram (PCG) signal. Here, the proposed analysis has six steps. First, signal-

acquisition set-up which was assembled for acquiring PCG and ECG signals from the people 

having age between 15 to 40 years. Second step, pre-processing: in which the samples of 

PCG and ECG signals were prepared and the signal was denoised using modified 

Butterworth worth filter. The third step was the incorporation of Empirical Mode 

Decomposition to get Intrinsic Mode Functions i.e., frequency components of the PCG. 

Further, only two appropriate IMFs were selected and recombined to generate a combined 

component signal (CChs). In the fourth step; a Modified Shannon Energy Envelope 

algorithm (MSEE) i.e., 4th order Shannon energy Envelope was implemented to frame 

energy envelopes. In the fifth step; an adaptive-thresholding was used for the time-lobes 

formation followed by peak correction algorithm i.e., correction of time-lobe peaks. In the 

sixth and final step; time-lobes of the PCG signal were computed and were correlated with 

R-peaks of ECG signal, through which localization of S1 and S2 was done. A total of 40

samples of the PCG signal consisting of 195 cardiac cycles were taken for the analysis. It

came out from the analysis of the self-acquired PCG signal that the best result of localization

of S1 and S2 is obtained for the PCG signal acquired from the Pulmonic position. After

analyzing the confusion matrix for the findings of the proposed method; accuracy &

precision were 90.20%, sensitivity 100%, and an error rate of 9.8% was obtained. The

accuracy of the method was found lesser if the PCG was acquired from the remaining three

auscultation areas of the human chest. The proposed method was compared with three other

earlier algorithms, out of which the proposed method showed a greater improvement.

Moreover, the implementation of EMD followed by choosing a few specific IMFs for the

formation energy envelope reduced the computation cost and enhanced the accuracy of the

method, too.
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1. INTRODUCTION

The latest WHO reports revealed that in 2019 heart disease 

caused deaths of more than 17 million population of the world 

which accounts for 32% of all global deaths in the year [1]. In 

2016 in India, 27% of reported deaths were caused by 

cardiovascular disease (CVD) out of which 45% of people 

who lost their lives were of age group 40-69 years [2]. In the 

last few years, one-fifth of the total deaths in India were deaths 

caused by heart disease. And this happened especially in the 

working-age population below the age of 55 years (Report: 

The Indian Express, 29th Sept 2021). Moreover, in the 

COVID-19 pandemic situation, a few studies showed that the 

mortality rate of CVD patients due to covid-19 was 14% 

higher and could be up to 87%. Therefore, time demands to 

focus more on the detection of early-stage symptoms of heart 

disease to curb the mortality rate. Sometimes, a few heart 

diseases are caused by dysfunction of the heart valve which 

could result into some issues inside the heart like back-flow of 

blood across the heart chambers, leaking of blood through 

narrow openings. These issues could lead to a sudden cardiac 

arrest. The early-stage detection and diagnosis of such cardiac 

problems is possible by analysis of the PCG signal. Such 

analysis identifies the heart-valve-dysfunction at early-stage 

and can reduce the risk of cardiac arrest. It is an interesting fact 

that the first heart sound S1 and the second heart sound S2 have 

larger amplitude-variation, so the level of information would 

be greater in these two sounds, obviously. On the other hand, 

the S3 and S4 have lesser amplitude-variation and most of the 

times they get merged with the noises and the heart murmurs. 

Therefore, the analysis of S1 and S2 gives much satisfactory 

results of diagnosis. 
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For identification of S1 and S2; Liang et al., presented a 

method based on heart sound envelogram. Although this 

algorithm detected the S1-S2 with 93% accuracy, the algorithm 

was found noise-sensitive [3]. An adaptive-thresholding based 

approach for localization of S1 and S2 was proposed by 

Belmecheri et al., but a loss of information was found due to 

the computational complexity of the method [4]. Bajelani et al. 

made an effort to detect S1 and S2 based on empirical mode 

decomposition in which the accuracy of detection of S1-S2 was 

shown 88.3%, but the method was too noise-prone [5]. In 

another approach; effort was made for identification of S1 and 

S2 by Nath et al. where PCG consist of 2520 cardiac cycles 

were taken but added extra noise was observed at the pre-

processing stage of the method [6]. Narváez et al. adopted an 

approach for segmentation of heart sound based on modified 

empirical wavelet transform which showed an accuracy of 

99.26%, but the method reflected several differences from 

manually segmented findings [7]. Again, Nath et al. made an 

effort for detection of S1-S2, but noise-sensitivity of the 

method revealed accuracy up to 74%, only [8]. Liu et al. 

proposed an approach for an automatic segmentation of S1, S2, 

S3, and S4 in which an Automatic low pass filter (ALPF) was 

used to separate murmurs. Here, an accuracy of detection was 

found 98.49%, but the method was found inappropriate for the 

heart signal with severe arrhythmia [9]. Akram et al. made an 

effort for localization of S1 and S2 using homomorphic 

filtering for which they achieved an accuracy of localization 

upto 97%, but it failed in accurate localization for corrupted 

heart sound signal [10]. 

Generally, the popular methods for monitoring of human 

heart are Electrocardiogram and blood test. But, for the 

valvular-heart-disease; non-invasive acoustic sensors are used 

to record Phonocardiogram (PCG). The PCG is recorded by 

placing an acoustic sensor or electronic stethoscope on any of 

the four auscultation points of the human chest i.e., Pulmonic, 

Aortic, Mitral, and Tricuspid positions. Appropriate 

placement of heart sound sensor on specified auscultation area 

of the human chest gives-out more accurate PCG signal [11-

15]. 

The proposed analysis has six steps: very first, the 

Phonocardiogram and the Electrocardiogram signal were 

acquired. The Phonocardiogram was acquired using an 

electronic stethoscope by placing it on every location of bare 

human-chest i.e., Pulmonic, Aortic, Mitral, and Tricuspid. The 

Second step was pre-processing; in which samples of PCG and 

ECG signals were prepared of time length 5-8 seconds 

consisting of 6-10 cardiac cycles. Then, the signal was de-

noised using Modified Butterworth filter. Third, a 

decomposition of PCG signal was done by incorporation of 

Empirical Mode Decomposition which came out with 8-12 

frequency constituents the PCG signal. Each frequency 

constituent is called as Intrinsic Mode Function (IMF). Further, 

out of 8-12 IMFs only first two IMFs i.e., first two frequency 

constituents were taken and recombined to create combined 

component signal (CChs). Fourth; a Modified Shannon Energy 

Envelope algorithm (MSEE) i.e., a 4th order Shannon energy 

envelope method was implemented on the combined 

component signal (CChs) for creation of energy envelope. Fifth; 

an adaptive-thresholding was used for time-lobe formation 

followed by peak-correction algorithm i.e., correction of time-

lobe-peaks. Sixth; the time-lobes obtained from PCG signal 

and R-peaks obtained of ECG signal was computed and a 

correlation was established to localize the S1 and S2. The 

proposed work was compared with three other pre-existing 

methods. 

 

 

2. METHODS AND MODELS 

 

The proposed work explores an algorithm based on 

Empirical Mode Decomposition (EMD) and Modified 

Shannon Energy Envelope method i.e., 4th order Shannon 

energy for localization of S1-S2. The PCG signal was acquired 

from persons of age group 15-40 years. It was a self-acquired 

signal; each signal recording was of length 2-3 minutes. From 

every subject, the PCG signal was acquired by placing the 

electronic stethoscope on Tricuspid, Aortic, Mitral, and 

Pulmonic positions of the bare chest of a person. Particularly, 

for the proposed analysis; 10 samples (each of time length 5-

10 seconds) from each auscultations area were taken i.e., total 

40 samples were taken. It was consisting of total 195 cardiac 

cycles. The proposed algorithm was implemented as per 

following flow chart in Figure 1. 

 

 
 

Figure 1. Steps of the proposed methodology (i.e., from 

acquisition of the signal to localization of S1-S2) 

 

2.1 System set-up and signal acquisition 

 

The very first part was the acquisition of the PCG i.e., Heart 

Sound signal. It was much crucial part. The subject was made 
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relaxed for minimum 10 minutes before the signal acquisition. 

Thereafter, the electronic stethoscope SS30L was placed in an 

appropriate position on the chest of the subject. ECG signal 

was also recorded in parallel by using 3-limb electrodes. 

An MP36 system set-up (of BIOPAC System Inc.) was used 

for the acquisition of Phonocardiogram and Electrocardiogram 

signals. For the PCG, an electronic stethoscope (SS30L) was 

used whereas for the acquisition of the ECG a lead set 

(SS2LA/L) was used along with EL503. Both the signals were 

recorded at a sampling frequency of 5000 samples/second [16]. 

The PCG and the ECG signals of 40 persons were acquired 

as per the experimental setup shown in Figure 2. Moreover, as 

per the declaration of Helsinki, written consent was taken from 

every volunteer to take their biological data and use it for 

research and analysis purposes. The computer system was 

consisting of BIOPAC BSL PRO software through which the 

acquired signal was saved into excel and .txt format for further 

analysis in MATLAB. 

 

 
 

Figure 2. Experimental set-up for recording of the signal 

(Images courtesy: biopac.com [16]). To record the heart 

sound, the electronic stethoscope (SS30L) was placed at P, 

A, M, T positions of human chest. For ECG recording 

SS2LB lead set was used. Both the data were taken into a 

computer using the MP36 interface 

 

2.2 Sample preparation and pre-processing 

 

Each signal sample that was cropped from the acquired data 

was of length 4-10 seconds and was consisting of 4-8 cardiac 

cycles. Further, the signal was re-sampled to a sampling 

frequency 1000Hz, as it made the signal better-ready for the 

proposed analysis method. Afterward, the signal was 

normalized then signal cleaning was done by applying a 

modified Butterworth filter i.e., signal was passed through 

low-pass-Butterworth-filter (Fc=200 Hz, Orde=8) and high-

pass-Butterworth-filter (Fc=20 Hz, Orde=5), back to back. 

This filtering action removed the low-frequency artefacts and 

high-frequency noises at an adequate amount. 

 

2.3 Empirical mode decomposition (EMD) of PCG signal 

and creation of CChs 

 

The generation PCG signal involves very complex 

mechanism and is non-stationary signal. Therefore, it could be 

supposed as a multi-component signal. So, the Empirical mode 

decomposition (EMD) could decompose it into its frequency 

constituents, called Intrinsic Mode Functions (IMFs) [6, 17]. 

Now, the EMD was implemented on the PCG signal to 

decompose it into its frequency components called, Intrinsic-

mode-function i.e., IMF-1, IMF-2, IMF-3, IMF-4, etc. Then, 

the frequency spectrum of each IMF was drawn and compared. 

After recombining the first two frequency components (i.e. 

IMF-1 and IMF-2, respectively) and regenerating a combined 

component signal (CChs) i.e. CChs=(IMF-1)+(IMF-2), It was 

found that the frequency spectrum of CChs was much 

resembling that of S1-S2 i.e. 20-200 Hz [7, 18]. As the 

proposed analysis was confined to the analysis of S1-S2, 

therefore the combined component signal (CChs) was 

generated from each sample of PCG signal and was used for 

further steps of the proposed analysis. It reduced the 

computational cost as well as rescued from high-frequency 

noise and low-frequency artefacts. 

 

2.4 Implementation of 4th order Shannon energy envelope 

approach on combined component signal (CChs) 

 

The earlier literature showed that if the Shannon Energy 

envelope method is used directly for the heart sound analysis, 

it could lead to false segmentation; as it is sensitive to the heart 

murmurs [8]. Now, a modified Shannon Energy Envelope 

algorithm (MSEE) i.e., 4th order Shannon Energy Envelope 

approach was implemented on combined component signal 

(CChs). The standard formula for Shannon energy is as 

following [3]: 

 

ES =  −
1

N
∑ x2(i) ∗ logx2(i)

N

i=1

 (1) 

 

where, x (i)=Normalized Original Signal, Es =Normalized 

average Shannon Energy. 

But the 4th order modified Shannon energy formula is as 

following: 

 

𝑬𝑴𝑺 =  −
𝟏

𝑵
∑ 𝒙𝟒(𝒊) ∗ 𝒍𝒐𝒈𝒙𝟒(𝒊)

𝑵

𝒊=𝟏

 (2) 

 

In this work, the Modified Shannon Energy Envelope 

formula (MSEE) i.e., 4th order Shannon Energy formula was 

used for the formation of smoother energy envelopes. 

 

2.5 Time-lobe formation through adaptive-thresholding 

and correction of time-lobe-peaks 

 

The framed energy envelops were consisting of various 

peaks. Generally, two higher peaks per cardiac cycle were 

observed in the obtained energy envelope. It had a higher 

possibility that these two higher peaks per cardiac cycle could 

be indicating the time-lobe position of S1 and S2 i.e., most 

expected positions of finding of S1 and S2. Therefore, an 

automatic-thresholding algorithm was implemented to get the 

Time-lobes (i.e., time-segments) for localization of S1 and S2. 

The thresholding algorithm which was based on the Cubic-

spline concept, computed a “unique threshold point” for each 

inserted signal [8]. Finally, the Time-lobes were created from 

the energy envelope. 

 

Correction of time-lobe-peaks 

In certain signals, a few undesired time-lobes were get 

appeared or some desired time-lobes were get suppressed, 

481



 

leading to false detection. To endure this situation, a peak 

correction algorithm, based on modified median filtering was 

incorporated [19]. 

 

2.6 Correlating the time-lobes of PCG signal with R-peaks 

of ECG signal and localization of S1 and S2 

 

Since the ECG signal was simultaneously acquired just to 

infer the number of cardiac cycles taken in the sample. During 

one cardiac cycle of ECG signal only one R-peak. Therefore, 

the computation of R-peaks in the given ECG sample could 

come up with the number of cardiac cycles taken in the sample. 

This calculation could be helpful in the localization of S1 and 

S2 in the final step. 

For the detection and computation of R-peaks in the 

simultaneously acquired ECG signal following process was 

implemented: 

a) ECG signal cleaning using the same Modified 

Butterworth filter. 

b) Implementation of Modified Shannon Energy 

Envelope algorithm (MSEE) on the ECG signal for the 

creation of an energy envelope. 

c) Further, the same adaptive-thresholding method was 

incorporated into energy envelopes of ECG for time-lobes 

formation. These time-lobes infer the time-stamps of R-peaks 

in the Electrocardiogram. 

As the R-peak of the ECG signal has adequate high 

amplitude, the R-peaks of the Electrocardiogram signal is 

detected easily with the said method. And, one time-lobe-peak 

per cardiac cycle is obtained from the ECG signal. 

In an ideal situation, after incorporating the proposed 

method; a single time-lobe-peak per cardiac cycle should 

come out from the ECG signal inferring the location of the R-

peak and two time-lobe-peaks per cardiac cycle would be 

obtained from the PCG signal indicating the location of S1 and 

S2 for a given sample. But during practical analysis, it did not 

happen frequently with the PCG signal, as there could be time-

lobe-peak suppression or false detection of extra peaks. 

Because, the PCG signal, which was primarily acquired as an 

acoustic signal is a non-stationary and noise-prone signal, too. 

On the other hand, the ECG signal, which was acquired 

primarily as an electrical signal, was least vulnerable to noise 

and most of the time came up with a single time-lobe per 

cardiac cycle concerned to the R-peak. This was the main 

reason for taking the ECG as a reference signal for the 

proposed algorithm [8]. In further steps of the processing, this 

concept was used to correlate and to localize the S1 - S2. For 

example, the number of time-lobe peaks that came out from 

the CChs signal could be two-timed the number of time-lobe 

peaks detected from the ECG signal. Moreover, the position 

S1-time-lobe-peak should be aligned with the position of time-

lobe-peak concerned to R-peak. This phenomenon was 

exploited for the decision algorithm of successful localization 

of S1 and S2. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Implementation and analysis 

 

3.1.1 Sample preparation and pre-processing 

In the proposed work, the signals were acquired at a 

sampling frequency of 5000 samples/second. As the maximum 

frequency range of desired heart sounds never exceed 500 Hz. 

Therefore, by the consideration of the Nyquist-theorem the 

signal was down-sampled i.e., re-sampled to 1000 

samples/second. This down-sampling helped to reduce the 

processing time of the proposed method, too [5, 9]. Then, 

signal cleaning and denoising were done by using the 

Modified Butterworth filter. This means, first the signal was 

passed through the low-pass-Butterworth-filter (Fc=200Hz, 

Order=8) then it was passed through high-pass-Butterworth-

filter (Fc=20 Hz, Order=5). The acquired ECG and PCG 

signals are displayed in Figure 3. Generally, the heart’s sound 

is listened by medical practitioners using simple stethoscope. 

But if the heart sound signal which is recorded or acquired 

using electronic stethoscope and is taken into a computer 

system; is called as Phonocardiogram (PCG). Further, to 

normalize the signal, it was divided by its absolute value of 

maximum. 

 
 

Figure 3. Acquired heart sound signal (i.e., PCG signal) and Electrocardiogram (ECG) signals i.e., first image (upper one) is of 

PCG signal and Second image (lower one) is simultaneously recorded ECG signal 
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Figure 4. PCG signal and its frequency constituents (i.e., IMFs). The original heart sound signal (PCG) is at the top. And, from 

IMF-1 to IMF-11 are Intrinsic Mode Functions i.e., frequency constituents of the heart sound signal 

 

 
 

Figure 5. The frequency spectrum of IMF-1, IMF-2, IMF-3, IMF-4, and IMF-5 
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3.1.2 Empirical mode decomposition of PCG signal 

Now, the Empirical mode decomposition algorithm was 

implemented on the PCG signal to decompose it into its 

frequency constituents. These frequency constituents are 

called, Intrinsic Mode Function (IMF). With the variation of 

frequency ranges of the obtained IMFs; these were named: 

IMF-1 (first frequency constituent), IMF-2 (second frequency 

constituent), IMF-3 (third frequency constituent), and IMF-4 

(fourth frequency constituent), etc. Generally, 6-11 IMF i.e., 

frequency constituents were obtained after decomposition of 

every signal in the order of variation of higher frequency 

component to lower frequency component of the signal, from 

IMF-1 to IMF-11, respectively. The very last IMF was called 

a residue, as it contains very-low-frequency components. The 

PCG signal and its IMFs are displayed in Figure 4. 

Further, the frequency spectrum of the PCG signal and its 

IMFs were obtained (as shown in Figure 5) and was analyzed. 

It was observed that if we take IMF-1 and IMF-2 and 

recombine it; then obtained combined component signal (CChs) 

had much resemblance of frequency range with that of S1 and 

S2. It can be more clearly observed from Figure 6 and Figure 

7. Now, the combined component signal CChs was taken for 

the further steps of analysis as:  

 

CChs= (IMF-1) + (IMF-2) (3) 

 

3.1.3 Incorporation of the 4th order Shannon energy envelope 

method on CChs 

Now, the 4th order Shannon Energy Envelope approach i.e., 

modified Shannon Energy Envelope method (MSEE) was 

incorporated to make energy envelope from the combined 

component signal (CChs). The energy envelope formed, is 

shown in Figure 8. 

 

 

 
 

Figure 6. The frequency spectrum of heart sound signal and that of IMF-1, IMF-2, IMF-3, IMF-4 and IMF-5 

 

 
 

Figure 7. The PCG signal (in the upper image) and its regenerated combined component signal (CChs) in the lower-one 
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Figure 8. The combined component signal (CChs) in upper-image and its Energy envelope in the lower-image 

 

 
 

Figure 9. Thresholding of the energy envelope (in the upper-image) and the time-lobes formation after cropping by a threshold 

value (in the lower image) 

 

3.1.4 Adaptive-thresholding of the energy envelope 

By implementation of the MSEE method on combined 

component signal (CChs); the energy envelope was framed. 

As per Figure 8; in each cardiac cycle, two smoother peaks 

were observed which are representing the approximate 

location for identification of S1 and S2. Now, for creating the 

“time-lobes” at these locations; adaptive thresholding was 

used. These time-lobes could be the time-segments where the 

possibility of the presence of S1 and S2 would be highest. 

By implementing the adaptive-thresholding method; a 

unique threshold “K” was computed for every inserted energy 

envelope signal. The computation of the threshold point “K” 

was based on cubic-spline and mean computation of energy 

envelope signal [3, 8]. For a particular signal, the computed 

threshold value (K) and the time-lobe formed are shown in 

Figure 9. 

 

3.1.5 Correction of time-lobe-peaks 

Sometimes, a highly noisy signal could give out false peaks 

of time-lobes. These false peaks of time-lobes are called here 

as unwanted peaks. These unwanted peaks are supposed to be 

false-time-lobes. Because, in a single heart-cycle; there could 

be appearance of two time-lobes only, using the proposed 

method of analysis. And, these two time-lobes would be 

representing the expected time-positions of first heart sound 

(S1) and second heart sound (S2) which would be detected in 

the further steps of the analysis. If more than two time-lobes 

get appeared in a single heart-cycle; then that extra time-lobe 

would be supposed as “unwanted peak”. Because, it is well 

known that only two major hearts sound i.e., S1 and S2 occurs 

in a single heart-cycle and those two time-lobes would be 

concerned to them. In the Figure 10; there are four heart-cycles 

for the taken heart sound signal. Then, there is possibility of 

maximum 8 time-lobes. If any 9th time-lobe appears, then that 

would be supposed as an unwanted peak. Therefore, for 

removal of the unwanted peaks i.e., false time-lobe-peaks; a 

peak correction algorithm was incorporated which was based 

on a modified median filtering concept [19, 20]. It improved 
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the performance of the process to a greater extent, as shown in 

Figure 10. 

Here, the ECG and PCG signals were simultaneously 

acquired from the same subjects and for the same period. So, 

both the signals were correlated with the same cardiac-

activity-variation and had co-existence, too. In the analysis 

part; initially, the R-peaks of the ECG signal were detected and 

computed (as shown in Figure 11). 

 

 
 

Figure 10. Time-lobe-peak correction: the energy envelope obtained from a very noisy PCG signal (in the upper image), 

Indicating the unwanted time-lobe-peak (in the middle image) and the corrected time-lobe-peak (in the lower image) 

 

 
 

Figure 11. The original ECG signal (in the upper image) and its R-peaks (in the lower image) 

 

 
 

Figure 12. Localization S1-S2 in the PCG i.e., the time-lobes super-imposed on the positions of S1-S2 
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Figure 13. S1-S2 localization process from top to bottom: ECG with R-points (in the first image), the PCG signal (in the second 

image), the Shannon-energy-envelops of the PCG signal (in the third image), the time-lobes (in the fourth image), and the 

localization of S1-S2 (in the fifth image) 

 

 
 

Figure 14. Decision algorithm for localization of S1 - S2 

 

Then, time-lobe-peaks from combined component signal 

(CChs) were detected and counted using MATLAB programs. 

In the final stage, the computed R-peak-positions of ECG 

signal were made correlated with the detected quantity of time-

lobe-peaks from the CChs as per the decision algorithm shown 

in the Figure 14. The Figure 12 is depicting the localization 

result of S1-S2 and the Figure 13 is elaborating the whole 

localization process in sequential manner. 
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Table 1. Statistics result representing accuracy of localization using the proposed method 

 

Auscultation 

areas 

No. of samples 

taken 

Total no. of cardiac 

cycles taken 

No. of cycles Successfully 

detected 

the S1- S2 

Percentage (%) of accurate 

localization of S1-S2 

Aortic(A) 10 41 24 58.54 % 

Pulmonic(P) 10 51 46 90.20 % 

Mitral(M) 10 51 36 70.59 % 

Tricuspid(T) 10 52 36 57.69 % 

 

Table 2. Performance evaluation of the proposed algorithm based on confusion matrix 

 
Auscultation areas Aortic Pulmonic Tricuspid Mitral 

No. of Cardiac cycles taken 41 51 51 52 

TP 24 46 36 36 

FP 8 05 4 10 

FN 9 00 11 12 

Accuracy 58.54 90.20 70.59 57.69 

Precision 80.00 90.20 90.00 75.00 

Sensitivity 72.72 100 76.59 71.42 

Error Rate 41.46 9.8 29.41 42.31 

 

Table 3. Assessment of the proposed algorithm with three other pre-existing methods for the PCG signal acquired from pulmonic 

position. Here, the proposed algorithm was compared on the basis of various parameters 

 

 
The proposed 

algorithm 

Algorithm based on 3rd order 

Shannon energy [8] 

 Method based on heart 

sound envelogram [3] 

Method based on Empirical 

mode decomposition [5] 

Total heart-

cycles 
51 51 51 51 

TP 46 43 38 35 

FP 05 06 09 11 

FN 00 02 04 05 

Accuracy 90.20  84.31 74.51 68.62 

Precision 90.20 87.75 80.85 76.08 

Sensitivity 100 95.55 90.47 87.50 

Error Rate 9.8 15.68 25.49 31.37 

 

The proposed method had given a greater accuracy of 

localization and detection of major heart sounds, S1 and S2. 

The analysis results have been summarized in Table 1. 

The summarized result of Table 1 depicts that a total of 40 

samples of heart sound (PCG) consisting of total of 195 

cardiac cycles were taken for the analysis. For the proposed 

method, it was observed that if the Pulmonic location opted for 

the recording of the Phonocardiogram; the accuracy of the 

method was found 90.20%. On the other hand, if the PCG was 

acquired from the remaining three auscultation areas (i.e., 

Tricuspid, Aortic, and Mitral), a lower success rate of 

detection was observed. Therefore, the Pulmonic (P) was 

found the best suitable position for the acquisition of heart 

sound signals for the analysis of S1 and S2. 

Further, accuracy, sensitivity, precision, and Error rate 

metrics were used and a confusion matrix was created for the 

performance evaluation of the proposed algorithm. The 

obtained results are summarized in the Table 2, as follows [10, 

21-23]: 

TP = Number of cardiac cycles had 2 time-lobes, actually. 

And 2 time-lobes detected (concerned to S1 and S2), practically. 

FP = Number of cardiac cycles had 2 time-lobes, actually. 

And more than 2 time-lobes detected, practically. 

FN = Number of cardiac cycles had 2 time-lobes, actually. 

And less than 2 time-lobes or Zero time-lobe detected 

practically. 

TN = Number of cardiac cycles had 2 time-lobes, actually. 

And zero time-lobe detected, practically. For this case, no any 

True Negative (TN) value was considered. 

 

Accuracy =
TP + TN

TP + TN + FP + FN
 (4) 

 

Precision =
TP

TP + FP
 (5) 

 

Sensitivity =
TP

TP + FN
 (6) 

 

Error Rate =
FP + FN

TP + TN + FP + FN
 (7) 

 

The proposed method was compared with three other pre-

existing methods. For the same self-acquired data set; the 

analysis approaches incorporated by Liang et al. [3], Nath et 

al. [8], and Bajelani et al. [5] were implemented and further 

depicted in Table 3. 

The Table 3 depicts that the proposed approach had higher 

accuracy, precision, sensitivity and lower error rate for 

detection and localization of S1 and S2 as compared to pre-

existing methods for the given self-acquired signal. The main 

advantages of the proposed method over the pre-existing 

methods are as following: 

(a) The proposed method was analyzed and evaluated on 

the basis of vast number of parameters like True positive rate 

(TP), false positive rate (FP), false negative rate (FN), 

accuracy, precision, sensitivity and error rate. 

(b) The database used in the proposed method of analysis 

was acquired or recorded by the authors by its own in a 

laboratory in the actual scenario. That is why it approaches to 
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predict the much better result of analysis of real scenario. 

(c) Time-lobe-correction algorithm used in the proposed 

method of analysis enhances the accuracy and efficiency of the 

proposed method. 

(d) Use of the Empirical mode decomposition followed 

by selection of the IMFs for the reconstruction of the signal 

better assists in reduction of noise for the proposed method. 

Moreover, it cannot be denied that the rate of success of a 

method not only depends upon the algorithm adopted but it 

also relies upon the quality of acquired data, skills of the 

person performing the signal acquisition, and the quality of the 

instruments/machines used in the acquisition process [24-29]. 

Hence, if more standard databases would be used for the 

proposed method, the accuracy would be higher. 
 

 

4. CONCLUSIONS 
 

For the human body, regular monitoring of cardiac health 

could reduce the possibility of an attack of a fatal disease. The 

monitoring of the health of the heart is mainly accomplished 

by the monitoring of the ECG. But there could be a few 

symptoms of heart disease like heart-valve-dysfunction that 

could not be reflected exactly in the ECG signal. Therefore, in 

the diagnosis of cardio-health, specifically concerned with 

heart-valve-dysfunction; the monitoring of the PCG signal 

plays a vital role. Generally, there could be two prime sounds 

that come out in a single cycle of the PCG signal which could 

be identified as S1 and S2. These two heart sounds consist of a 

large extent of information because of their higher amplitude. 

The remaining two heart sounds i.e., S3 and S4 consist of lower 

amplitude and gets merged with the heart murmurs and the 

other noises. Therefore, analysis of S1 and S2 was focused, 

here. 

By placing an electronic stethoscope on the four different 

specific points of the human chest, the PCG signal was 

recorded. The ECG signal was also acquired, simultaneously, 

to be used as a reference of the cardiac cycle. After the sample 

preparation and denoising of the signal, the PCG signal was 

decomposed into its frequency components using Empirical 

Mode Decomposition (EMD). Further, two frequency 

components (IMF-1 and IMF-2) were chosen and recombined 

to reconstruct the signal for the upcoming steps of the analysis. 

Choosing the first two IMFs intensified the frequency 

components concerned to S1 and S2 in the signal and reduced 

the computation cost, too. It also helped to discard the low-

frequency noises and high-frequency artifacts from the signal. 

Finally, the Modified Shannon Energy Envelope algorithm 

(MSEE) i.e., 4th order Shannon Energy Envelope approach 

was implemented followed by adaptive thresholding and time-

lobe correction algorithm for the localization and detection of 

S1 and S2. 

The final analysis result depicted that for the self-acquired 

PCG signal from the Pulmonic position; the proposed method 

revealed the accuracy and the precision 90.20%, the sensitivity 

100%, and the error rate 9.8%. Thereafter, the proposed 

approach was compared with three other pre-existing 

approaches for the same self-acquired signals and it was found 

that the proposed approach had greater accuracy of 

localization of S1 and S2. 
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