
Pixel Optimization Using Iterative Pixel Compression Algorithm for Complementary Metal 

Oxide Semiconductor Image Sensors 

Vinayagam Palani1 , Meshal Alharbi2 , Mohammed Alshahrani3 , Surendran Rajendran4*

1 Department of Electronics and Communication Engineering, Saveetha Engineering College, Chennai 602105, India 
2 Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, 

Alkharj 11942, Saudi Arabia
3 Department of Mathematics, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, 

Saudi Arabia 
4 Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and 

Technical Sciences, Chennai 602105, India 

Corresponding Author Email: surendranr.sse@saveetha.com

https://doi.org/10.18280/ts.400228 ABSTRACT 

Received: 22 December 2022 

Accepted: 8 February 2023 

The research presents a unique approach to the iterative pixel compression method for pixel 

optimization by reducing noise with a motion-guided backdrop. Image resolution and 

precision are increased by using a complementary metal oxide semiconductor (CMOS) 

image sensor. Researchers offer a dispersed equivalent implementation of the Iterative Pixel 

Compression technique for CMOS image sensors in order to successfully handle the 

expanded data. The current frame is handled by the buffer circuit in the CMOS image sensor. 

The registered bank is related to subsequent frames. It consists of a collection of registers 

that retain information on the grey levels of the acquired pictures' pixels. The image DE 

noising signal process is applied to the input picture, which contains noise. The pixel 

averaging filter is used in image DE noising to enhance picture quality and produce a better 

estimate. Pixel ordering identifies misplaced areas of photos due to the use of an iterative 

pixel reduction method. It allocates the best existing pixel feasible. Peak signal-to-noise ratio 

(PSNR) assess the image's quality through and Mean Square Error (MSE). When compared 

to previous approaches, our results demonstrate a 2% improvement in PSNR and a 1% 

reduction in MSE. 
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1. INTRODUCTION

Computerized photographical process includes a lot of 

computations to overcome the drawbacks of the conventional 

film camera [1]. The computational technique encompasses 

the method of changing of the image parameters while 

capturing for refined reconstruction with indirect 

measurement. The realistic guide in the process of image 

capturing and manipulating methods is to generate compelling 

pictures using computer graphics, but also to extract scene 

properties from computer vision along with various 

illustrations [2]. 

Photographers are not accustomed to new algorithms for 

taking high dynamic range pictures. The researchers can study 

about the image processing and how the images have been 

captured through the noise issues. The novel capturing 

technique includes a sophisticated sensor, electromechanical 

actuator, and onboard process [3]. Capturing multiple images 

with different device attributes and altering the flash 

enlightenment attributes is one of the innovative 

modernization techniques that are developed [4]. As the 

CMOS image sensors offer better features, it has been most 

widely used than (charge coupled device) CCD based image 

sensors. 

A complementary metal oxide semiconductor (CMOS) 

sensor is an IC with an array of pixel sensors. It consists of 

four major parts, namely, color filter, digital controller, pixel 

array, and the analog-to digital converter as depicted in Figure 

1.  

Figure 1. CMOS image sensor 

Micro lenses channel the light onto the photosensitive part 

of each pixel. The photon passes through a color filter array. 

This color filter captures the color information. Separate 

measurements of R, G, and B are enabled by the color filter 

[5]. It filters out the unwanted colors and allows specific colors 

to a pixel array. Every pixel sensor converts the incoming 

light’s sensitivity into voltage. The voltage signal is then fed 

to the analog to digital converter to convert into the digital 

signal.  

Salt and pepper noise is generated by the errors during the 

analog to digital conversion process [6]. This salt and pepper 

noise can be reduced by using pixel-averaging filter and the 

pixels are optimized by an iterative pixel compression 

algorithm. The image is applied for filtering in order to 
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minimize noise and for extracting structural information. The 

images are found to be spatially invariant or may be variant 

kernels [7]. Spatially invariant kernel enables effective 

filtering processing [8]. 

Figure 2. Computational photography 

The Filtering of images uses guidance signals. The method 

of guided or collaborative image filtering is utilized in a 

number of computational photography and computer vision 

techniques. The data depending the framework does not view 

the structural differences in the guidance and input picture. 

Figure 2 represents the Computational Photography 

framework. 

2. LITERATURE SURVEY

Zhang et al. [9] proposed three approaches to optimize

pixels. The result of the optical characteristics of 1.05-μm 

pixel post optimization is as good as that of the 1.75-μm pixel. 

Harold Christopher Burger offered a method for DE noising 

astronomical images [10]. He treated each pixel of a camera 

sensor independently so that the faint stars and nebula are 

sealed. The author provided a gentle introduction to coded 

photography. He used Principal Component Analysis 

technique and produced a reasonably better quality fused 

deburred image [11]. Rithe [12] demonstrated a scalable 

reconfigurable bilateral filtering processor on a chip. The 40-

nm CMOS chip processing 13 megapixels achieved 

significant energy reduction. 

Steve Mann proposed a method for generating volumetric 

3D sculptures called Topo sculpting. In order to eliminate 

shape and form from a moving object, depth cameras were 

utilized [13]. Wave front coding and lattice focal lens imaging 

are two methods used to increase the depth of field of an 

imaging system, and David Stoker compared their results [14]. 

At a rate of 2lp/mm, the field depth was successfully increased. 

Performance across a certain frequency is crucial for 

recognition applications. The authors presented an approach 

of designing an n-in-n ATLAS pixel sensor. A new 

configuration was proposed to optimize its layout parameters 

[15]. 

Venter and Sinha [16] proposed 4-T pixel structure to 

reduce the fixed pattern noise. Jung et al. [17] optimized an 

FFS pixel structure for the application of nLC to higher 

resolution mobile phone displays. Electro optical 

characteristics were improved by varying the structure of the 

pixel from VOT structure to POT structure. Jinping Gu 

proposed a distributed parallel optimization of the PPI 

algorithm [18]. Ashwani Kumar analyzed a hybrid CMOS 

OxRAM pixel circuit [19]. The dynamic array of the pixel was 

improved by a factor of nearly two and half. Luo [20] 

presented a CMOS design which geared up the binary 

temporal optical encoding. The pixel occupied an area roughly 

10.5µm X 10.5µm with a fill factor 42%. 

Toshiki [21] suggested a CMOS-based image sensor and 

showed how to use it to achieve high-speed images without 

rolling shutter effects. The architecture of a digital pixel sensor 

was modelled at the system level by Radpour and Sayedi [22]. 

An illuminating light's energy can be captured by it. He has 

demonstrated that there is good agreement between the 

experimental findings of photodiodes and the system level 

model of the manufactured photodiodes (0.18 m CMOS 

standard technology).  

According to Boukhayma's [23] proof, a full VGA APS can 

produce deep subelectron noise. Francisco Calderon proposed 

a Modular Robot to satisfy the diversity of image perception 

tasks [24]. It was capable of solving the problems of search, 

rescue, land mine detection, unexploded ordnance detection, 

and exploration. Sara Marconi designed a bigger pixel readout 

chip. He has achieved optimized power results, reduced 

switching activity, optimized area, and power. Holography 

and photography have approximately similar noise 

performance, as demonstrated by Marks et al. [25]. 

The projected optimization of kidney image based on 

Sparse Deep Neural Network. For easy identification, the 

kidney abnormality classification in the image was shown in 

colour. It provided a heuristic method to optimize the design 

of a pixel antenna. It condensed the load by over 65 % and 

achieved a broader coverage of bandwidth. Cecilia 

Aguerrebere suggested using hyperprior to model the image 

patches in order to stabilise the estimation process [26]. His 

findings indicate that, for a variety of image restoration issues, 

HBE outperforms a number of cutting-edge restoration 

techniques. Bumsub Ham introduced a joint filtering 

framework that was widely applicable to computational 

photography and computer vision tasks. This model did’t have 

a closed form solution.  

Berzins et al. [27] demonstrated sub-micrometer dielectric 

nanostructure. It was based on RGB filters by means of high 

angle tolerance. He has achieved the reduced filter size, which 

is less than 0.55 µm by improving fabrication techniques. Xie 

and Theuwissen [28] proposed a variety of on-chip smart 

temperature sensors. It intends to thermal recompense of 

CMOS image sensors’ dark current. According to the 

experimental findings, the MOS-based temperature sensors 

used 36 and 40 W of power, respectively [29]. Using four 

different chips, both managed to reach 3-sigma () errors of less 

than 0.75°C. The conversion time is 16 ms, and the 

temperature ranges from -20°C to 80°C. According to the 

experimental findings, the MOS-based temperature sensors 

used 36 and 40 W of power, respectively. Using four different 

chips, both managed to reach 3-sigma () errors of less than 

0.75°C. The conversion time is 16 ms, and the temperature 

ranges from -20°C to 80°C. 

Keiichiro Kagawa proposed a dual mode 303 times 

compressive computational using a CMOS image sensor [30]. 

Image sensor is able to operate in dual modes. To increases the 

compression ratio and reduce the image reproduction time, 

Deep Neural Network can be used for further development.  

Horio et al. [31] suggested multi-path interference in a 

compressive TOF when combined with a multi-tap macro-

pixel CMOS image sensor in order to compare and enhance 

the absolute magnitude of the mean error in a single path 

scenario. 
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3. PROPOSED METHODOLOGY

The following Figure 3 shows the block diagram of our 

iterative pixel compression algorithm. It gives improved 

accuracy than other algorithms. It consists of a buffer circuit, 

register bank, and pixel averaging filter. Successive frames are 

associated with the register bank. Pixel averaging filter is used 

to find the phase of the image DE noising [32]. The input 

image, which consists of noise, is applied to the image DE 

noising process. Subsequently, pixel averaging filter technique 

is applied to get better image quality and estimation of an 

image. 

Figure 3. Block diagram of the proposed iterative pixel 

compression algorithm 

The design process is as follows here. It is constructed in 

Simulink and the building blocks are taken from XSG (Xilinx 

system generator). It is simulated for ensuring the conformity 

of the algorithm. XSG Building blocks are behavior oriented. 

It allows quick simulations. They are also capable of 

combining with the usual Simulink blockers for constructing 

the entire design. 

Place the entire system fMAX and latency between the high 

level Simulink design descriptions. XSG analyses the 

description of Simulink. It develops both the HDL coding and 

the optional bit stream of targeted FPGA devices. By default, 

it sums in the pipeline registers as well as the needed amount 

of time division multiplexing for satisfying the design 

specifications. 

3.1 De-noising using pixel averaging filter 

Because of the coherent processing of the backscattered 

signal, the image is meant by spatial noise. These spatial 

noises degrade the quality of the unprocessed images. During 

relentless weather circumstances, the images will be with 

noises like salt & pepper noise.  It may be due to the visibility 

of scattered light. Therefore, DE noising becomes essential to 

remove the noise. To enhance the image quality, a pixel 

averaging filtering technique is used here.  

The edge of the image with the least contrast is selected 

using the pixel averaging filter, which is composed of the 

average generator module. The average filter is constructed 

with 18 |ADD|, eight shifter components and one multiplier. 

Mean of the luminance calculations of a pixel that prepares the 

minute directional distinction Dmin is achieved using 

conventional generators, as given in Figure 4. pi, j-1, pi, j+1, 

pi+1, j-1; pi+1, j and pi+1, j+1 are absolutely implicit to be the 

best possible pixels. The final Multiplexer output (a+bx2+c)/4. 

Then the multiplexer outputs the value of the mean of the 

pixels that prepares Dmin. Certain directional contrast was 

determined by four-pixel value and hence it’s reconstructive 

value of four pixels. The two-level adder and shifter blocks are 

used to cease the estimation. 

Figure 4. Architecture diagram of an average generator 

Pertaining to the usage of chips, the silicon region of a 

multiplier is bigger compared to a shifter. Here, the shifter unit 

for bringing down the equipment costs can replace the entire 

multipliers. Post estimation, the next iteration of input pixels 

are b, d, e, and g altogether processed.  

The recalculated value𝑓i,j acquired from the pixel averaging

filter shall be given in Eq. (1). 

𝑓𝑖̅,𝑗 = {

𝑆𝑜𝑟𝑡𝐹𝑜𝑢𝑟2, 𝑖𝑓(𝑆𝑜𝑟𝑡𝐹𝑜𝑢𝑟2 > 𝑓𝑖̅,𝑗)

𝑆𝑜𝑟𝑡𝐹𝑜𝑢𝑟3,  𝑖𝑓(𝑆𝑜𝑟𝑡𝐹𝑜𝑢𝑟3 < 𝑓𝑖̅,𝑗)

𝑓𝑖̅,𝑗,  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(1) 
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3.2 IPC imaging scheme 

The technique proposed is based on the coding of Iterative 

Pixel Compression. The spatial idleness shall be eliminated by 

Discrete Wavelet transform- based decomposition. Wavelet 

Transforms are becoming significant techniques for image 

compressing as it provides an extensive enhancement in the 

quality of the picture at a high compression ratio using energy 

compaction properties.  

It divides an image to a set of functions called wavelets from 

a unit prototype wavelet that is named as mother wavelet by 

dilation along with shifting. Later, the transform coefficient is 

calculated individually for various segments of time domain 

signals at several frequencies. At the time of DWT process, 

every filter is used flatly on every row of images, trailed by the 

vertical applications for every column of prior images that 

were filtered. After the first level decomposition, four 

subbands are found to be developed. For the first level of the 

original image (K=1), the 2D wavelet transform is used. Here 

stands for the Gaussian estimation of averaging filter's 

standard deviation. The mean and variance of the noise 

distribution for the majority of pixels will be equal. These 

metrics need to be taken into consideration: 

Wmin=minimum gray value in Txy 

Wflex=average gray value in Txy 

Wmax=maximum gray value in Wxy 

WXY=gray level at the coordinates (x,y) 

Tmax=maximum possible size of Txy  

Procedure of our proposed scheme 

Step 1: Starting iteration 

Step 2: Stage A: If W(min)<Wmed<Wmax, and then Wmed 

is not a correlated impulse 

Step 3: Goto stage B and check if Wxy is the correlate 

impulse 

Step 4:  Ensure whether Wmed is a correlated impulse. If so, 

scale of the window is increased. Stage A is recurrent until (a) 

Wmed is not correlate with impulse, then move to stage B or 

(b) If Tmax is reached, then the output is Wxy

Step 5: Stage B: If Wmin<Wxy<Wmax, then Wxy is’t-

correlated impulse. The output will be Wxy (reduced 

distortion) 

Step 6: Check either Wxy= Wmin or Wxy= Wmax. Output 

will be Wmed. Wmed is’t correlated impulse (from stage A) 

Step 7: Exit 

The following Figure 5 shows the hardware structure of the 

IPC imaging with the help of using Xilinx XSG with 

MATLAB. 

Figure 5. Hardware structure of the IPC algorithm 

A hardware design with parallel operations and histogram 

estimation is made possible by the improvement of the IPC 

algorithm. The following can be used to represent the 

histogram estimation's mean: Assume mean of the histogram 

can be obtained from Eq. (2). 

𝜇 =
1

2𝑁
∑ 𝑖. ℎ𝑠(𝑖)

𝑖

 (2) 

where, hs(i) refers to the sum of the histogram in a rectangular 

grid. Which means that the count (i) gray level is found from 

the summation image over the domain D. Hence, i.hs(i) is 

substituted in Eq. (2) by “i” adding hs(i) as shown in Eq. (3): 

𝜇 =
1

2𝑁
∑ ∑ 𝑖

ℎ𝑠(𝑖)

𝑚=1𝑖

 (3) 

Eq. (3). can be rewritten by replacing the summations and 

replacing “i” by (K, l) is possible in Eq. (4). 

𝜇 =
1

2𝑁
∑ ∑ 𝐼𝑆(𝑘, 𝑙)

𝑘∈𝐷𝑘∈𝐷

(4) 

In all cases, most assurance notices the alteration to all 

spatial areas in “D” permitting for finding the value of the 

mean component in the histogram that utilizes the 

supplementary memory. 

3.3 Results and discussions 

The proposed IPC algorithm has been accomplished on 

Vertex 2 Pro FPGA using VHDL & Matlab. Our proposed 

method is implemented and evaluated using parameters. 

Datasets are valued in natural and raw images by taking 

hundreds of images that are processed using Matlab and Xilinx 

XSG with the support of HDL and System C language. The 

results produced by this method are discussed in Table 1. 

Table 1. Evaluation parameters 

Parameter Value 

Data Set Natural & raw images 

Number of images Hundred 

Tools Used Matlab 2017a, Xilinx XSG 

Name of the device FPGA - Vertex 2 Pro 

Languages used HDL, System C 

Figure 6(a). Input image 
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Figure 6(b). Filtered image 

Figure 6(a) depicts the input image and Figure 6(b) 

represents the filtered output images which are produced by 

our proposed algorithm. 

The performance result of the proposed implementation is 

depicted in Table 2 for various sizes of image displacement. In 

specific, the four display the process time for every application 

where the variation in the time unit is explicit. Regarding 

FPGA, the processing is parallel, and its iterative pixel 

numbers allow for reaching the minimal processing duration. 

From the final column, a high speed factor is achieved. It is 

also found that the speed up and the number of displacements 

are directly proportional. 

This result also highlights that the total count of movements 

has no impact on the process time in FPGA. In contrast to the 

PC solution, the process time depends on the count of 

movements. In addition, PC solutions are found to be simple 

and help quick implementation dissimilar to FGPA. The image 

quality and filter performance can be determined using the two 

measured Mean Square Error and Peak Signal-to-Noise Ratio. 

Table 2. Summary of proposed implementation 

Size of the image (in 

pixel) 

Number of 

display 

Processing time (in 

seconds) 

Processing time to Capture (in 

ms) 

Speed up 

Factor 

320X240 1 0.3 7.6 39.0 

640X480 1 1.2 30.7 39.3 

640X480 4 4.6 30.7 152.3 

640X480 8 9.2 30.7 300.1 

640X480 16 18.4 30.7 600.9 

1024X768 1 2.7 78.6 34.5 

The Mean Square Error (MSE) refers to the collective 

squared error between the original and output images. The 

value of the peak error is referred to as the Peak Signal-to-

Noise Ratio (PSNR). The mistake is also less when the MSE 

value is low. The PSNR and MSE can be found using Eq. (5) 

and Eq. (6): 

𝑃𝑆𝑁𝑅 = 10 log 10 (
𝑅 2

𝑀𝑆𝐸
) (5) 

𝑀𝑆𝐸 =  
∑ [𝐼1(𝑚, 𝑛) − 𝐼2(𝑚, 𝑛)]2

𝑀,𝑁

𝑀 ∗ 𝑁
(6) 

where, M & N are the total count of rows as well as columns 

in the original image. R refers to the highest variation found in 

the input image. 

Table 3 depicts the comparison of parameters like PSNR 

and MSE for various methods over various noise levels. 

Figure 7 shows the properties of DE noise parameters that 

can be compared, such as the PSNR values of various 

approaches under various noise levels. 

Table 3. Performance metrics 

Noise 

level 
PSNR MSE 

DCT DWT IPC DCT DWT IPC 

10% 41.398 41.466 45.466 0.025 0.024 0.022 

20% 39.084 41.421 43.421 0.040 0.037 0.035 

30% 37.847 39.964 41.964 0.054 0.051 0.050 

40% 36.773 38.782 40.782 0.068 0.067 0.065 

50% 35.708 37.861 39.861 0.082 0.081 0.080 

60% 35.080 37.272 39.272 0.096 0.099 0.097 

70% 33.579 35.540 38.540 0.112 0.112 0.111 

80% 33.976 35.122 38.122 0.126 0.125 0.123 

90% 33.550 35.555 37.555 0.145 0.141 0.140 

Figure 7. Comparison of PSNR performance at various noise 

densities 

Table 4 indicates the comparison between the use of logic 

in dual-clutch transmission, and 131 inputs are used in that the 

bonded IOBs are 117 out of 190 within a minimum period of 

20.650ns. Minimum input arrival time is 21.750ns and the 

maximum output time is 4.880ns upon processing the 

maximum combinational path delay is 15.153ns. Digital 

wavelet transform 131 inputs are used in that the bonded IOBs 

are 116 out of 190 within a minimum period of 15.520ns. 

Minimum input arrival time is 17.510ns and the maximum 

output time is 4.283ns upon processing maximum 

combinational path delay is 15.113ns and Image processing 

core 130 inputs are used in that the bonded IOBs are 111 out 

of 190 within a minimum period of 10.120ns. Minimum input 

arrival time is 11.821ns and the maximum output time is 

03.982ns on processing the maximum combinational path 

delay is 15.101ns. Figure 8 depicts the comparison of area and 
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power consumption. It is observed that the proposed algorithm 

produces lesser power overhead and lesser area complexity 

over other methods. 

Table 4. Comparison of the use of logic 

Use of logic DCT DWT IPC 

Number of I/Os 131 131 130 

Number of Bonded 

IOBs 

117 out of 

190 

116 out of 

190 

111 out of 

190 

Minimum Period 20.650ns 15.520ns 10.120ns 

Minimum Input 

Arrival time 
21.750ns 17.510ns 11.821ns 

Maximum Output 

Required time 
4.880ns 4.283ns 3.982ns 

Maximum 

Combinational Path 

Delay 

15.153ns 15.113ns 15.101ns 

Figure 8. Evaluation of area & power consumption 

4. CONCLUSIONS

The CMOS image sensor's space and power consumption 

are reduced by the suggested iterative pixel compression 

technique. For better visual quality, a multiresolution structure 

employs an averaging filter. The iterative coefficient is 

ordered according to how few bits are required to represent its 

magnitude in binary form. Since the transformation, iterative 

pixel compression coding has been used for all bits in the row 

with comparable contents. The transmitting of bits in each row 

successively is referred to as the efficient sequence for 

continuous transmission. The predicted pixel-averaging filter 

structure is smaller and uses less energy. In contrast to the 

current algorithms is the proposed approach. Experimental 

results show a 2% increment in PSNR and a 2% reduction in 

MSE. The further enhancement will be focusing on the 

reconstruction of damaged images in existing datasets to 

create new versions using digital image processing in deep 

learning technologies. 
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