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The conventional method to locate acupuncture points (acupoints) on human body requires 

the massagists to have rich experience and skillful performance, and the learning cost is 

always high. The visual positioning technology of massage acupoints based on image 

registration can lower the technical difficulty, thereby allowing more people to enjoy and 

benefit from massage therapy. However, existing algorithms for this technology generally 

have a series of shortcomings including the unstable matching results, the inaccurate image 

registration effect, and the unsatisfactory results in case of obvious local deformation or 

occlusion. In view of these matters, this paper studied a novel visual positioning algorithm 

for acupoints based on image registration. At first, an Image Acupoints Positioning 

algorithm was proposed based on Convolution Neural Network (CNN-based IAP 

algorithm), the algorithm can combine the prior information of acupoint positions in visual 

images with 3D CNN, which has a stronger feature expression ability, and maintain high 

positioning accuracy under unfavorable conditions such as image noise, illumination 

change, or occlusion. Then, based on the structure of Fully Convolutional Network (FCN), 

a multi-scale parallel FCN was constructed, which has introduced the techniques of multi-

scale parallel downsampling, spatial pyramid of dilated convolutions, adaptive channel 

attention mechanism, direction perception, and upsampling, intending to improve the 

model’s performance in non-rigid registration of the visual images of massage acupoints. At 

last, the validity of the proposed model was verified by experimental results. 
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1. INTRODUCTION

Health issues are always a major concern for most people 

and massage has becoming an increasingly popular therapy as 

it is natural and has no side effect [1-3]. Acupoint massage is 

an important part of traditional Chinese medicine therapy, and 

by stimulating certain acupoints, some curative effects, such 

as conditioning the human body, relieving fatigue and strain, 

or curing diseases, could be achieved [4-11]. Apparently, the 

accurate positioning of acupoints is related to the effect of 

massage therapy. The conventional method to locate acupoints 

on human body requires the massagists to have rich experience 

and skillful performance, and the learning cost is always high 

[12-16]. The visual positioning technology of massage 

acupoints based on image registration can lower the technical 

difficulty, thereby allowing more people to enjoy and benefit 

from massage therapy, thus it is of utterly importance to 

research the visual positioning of massage acupoints based on 

image registration [17-21], and this research can spur technical 

advancement in fields such as computer vision, image 

processing, and biomedical engineering, enlightening new 

sparkles in research ideas and methods.  

Lin and Yi [22] considered an automatic human acupoints 

recognition system based on computer binocular vision 

technology for the purpose of accurately locating and 

recognizing acupoints on human body during medical 

treatment, their method adopted the binocular vision 

technology to collect images of human body limbs and attain 

3D coordinates in space; then to verify their method, the 

positioning errors of each marked point calculated by the 

binocular vision technology and measured by a 3D coordinate 

measuring instrument were compared, the results proved that 

the proposed system can help therapists locate and recognize 

acupoints and it could meet clinical application requirements. 

Wei et al. [23] pointed out that finding and positioning 

acupoints precisely is one critical factor for massage robots, 

and they proposed a modeling method for robot positioning 

based on least squares. In their work, a knowledge consultation 

mechanism was set for the calculation of acupoint positions as 

a robot would need feature points of the foot to be massaged 

to divide and fit foot contour sampling data into piece-wise 

curves. Since the robots are model-free, Q-learning was 

adopted to optimize robot positioning, and robots could 

calculate the approximate positions of acupoints through the 

prediction model, and meanwhile performing online 

adjustments to get the accurate positions through Q-learning. 

These strategies enable robots to automatically search and 

position the pelma acupoint with little real-time computation 

and storage, and the idea of this paper provides a clue for 

Chinese medical standardization. Hao and Han [24] 

introduced the current research progress of Acupoints 

positioning and tracking technology (APTT), including the 

APTT based on vision, based on template matching, and based 

on Back-Propagation neural network, also, the drawbacks of 

existing techniques and the prospect of APTT were discussed 

in their paper. 

Existing image registration-based IAP algorithms can be 

divided into three major categories: those based on feature 
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points, those based on regions, and those based on deep 

learning, wherein feature point extraction and matching are 

easily affected by image noise, illumination change, and 

occlusion, leading to unstable matching results; and for elastic 

biological tissues such as muscle and skin, the feature points 

may deform, lowering image registration precision. Besides, 

those region-based methods need a long computation time 

since their computation load is large, and such load will be 

particularly high when there are obvious local deformations or 

occlusions, and a longer computation time is required. As for 

the third type, those based on deep learning, massive tag data 

is required for training, but in the acupoint massage scenario, 

it’s difficult to acquire so large amounts of data, and moreover, 

these deep learning-based methods also need high 

computational resources and may not be current enough. So, 

to overcome the shortcomings of above-said algorithms, this 

paper studied a novel IAP algorithm based on image 

registration. In the second chapter, an CNN-based IAP 

algorithm was proposed which can combine the prior 

information of acupoint positions in visual images with 3D 

CNN and maintain high positioning accuracy under 

unfavorable conditions such as image noise, illumination 

change, or occlusion. In the third chapter, based on the 

structure of FCN, a multi-scale parallel FCN was constructed, 

with multi-scale parallel downsampling, spatial pyramid of 

dilated convolutions, adaptive channel attention mechanism, 

direction perception, and upsampling introduced, intending to 

improve the model’s performance in non-rigid registration of 

the visual images of massage acupoints. At last, the validity of 

the proposed model was verified by experimental results.  

 

 

2. VISUAL POSITIONING OF MASSAGE ACUPOINTS 

 

When researching positioning algorithms for visual images 

of massage acupoints, the prior information of inherent 

acupoint positions in the image is helpful for positioning, but 

it has seldom been applied in CNN-based positioning 

algorithms. In order to make the model focus more on the 

features of acupoint positions and improve the positioning 

accuracy, this paper proposed a novel IAP algorithm based on 

CNN that combines the prior information of acupoint positions 

in visual images with 3D CNN, which has a stronger feature 

expression ability, and gives highly accurate positioning 

results under unfavorable conditions such as image noise, 

illumination change, or occlusion. 

Patch-based prediction strategy could be adopted to realize 

the combination of the said prior information and 3D CNN, 

namely to crop a small patch from a local area of the acupoint 

image, and this local area needs to contain the target acupoint 

and its surrounding area, then the cropped patch is input into 

to CNN for feature extraction, and the relative position 

between the acupoint and the patch is predicted according to 

the extracted features. Since the coordinates of the cropped 

patch are known, the absolute position of the target acupoint 

in the image could be calculated based on the prediction results 

of the relative position. Through above operations, the model 

could focus on the target acupoint and its surrounding area, in 

this way, the interference of the background to the positioning 

task could be reduced, and the positioning accuracy could be 

improved; in the meantime, it could flexibly cope with 

different scales, angles, and deformations with high 

adaptability. 

There are individual differences between people, and such 

differences would accumulate and enlarge as the distance in 

the acupoint image increases, resulting in a lower prediction 

accuracy. If the patch is far from the target acupoint, then it’s 

likely that the content of the target acupoint is not contained in 

the patch, so it’s impossible to accurately predict the shape and 

size of the target acupoint through the extracted features. To 

fully consider situations at different distances from the target 

acupoint so that the training process is more comprehensive 

and the prediction is more accurate, this paper proposed a 

multi-density sampling strategy, that is, to sample in areas at 

different distances from the target acupoint with different 

densities. Such multi-density sampling strategy enables the 

network to prediction tasks of different distances, it could 

enhance the generalization ability of the network, increase the 

diversity of training samples, and reduce the over-fitting risk 

of the model. 

The prediction tasks of patches closer to the target acupoint 

are simpler and the prediction of farther patches is more 

difficult. If patch-based loudness prediction at different 

distances is to be realized in the true sense, then different loss 

functions for long distance, medium distance and short 

distance need to be set and adopted based on multi-density 

sampling, this is because the different loss functions enable the 

network to make effective predictions at different distances, 

and the overall prediction performance of the network could 

be enhanced. 

In the model output, besides a 6-dimensional 3D box 

coordinate is output for each acupoint, a binary variable ind is 

also output for each acupoint, which is used to judge whether 

the sampled patch is within the predictable region of the 

corresponding acupoint or not. When the patch is within the 

predictable range, the tag of ind is 1, indicating that the model 

can predict the acupoints in this patch; when the patch is not 

within the predictable range, the tag of ind is 0, indicating that 

the model can not make effective predictions on acupoints in 

this patch. As mentioned above, different loss functions need 

to be set to enable the network to make effective predictions at 

different distances, these loss functions judge the region type 

of the patch according to the value of ind, and then adjust the 

learning strategy of the network based on the region type. In 

this way, the network can better learn how to make effective 

acupoint predictions at various distances. 

For patches at long distances from the sampling region of 

each acupoint, only a binary variable MSE needs to be 

considered during training. Assuming: t represents the number 

of sample points; ycz represents the predicted value, zsz 

represents the true value, then the following formula gives the 

loss function for long distance: 

 

( )
2

1

1
t

iY i

i

Loss ycz zsz
t

=

= −  (1) 

 

For patches at medium distances from the sampling region 

of each acupoint, both the center point offset prediction of the 

target acupoint and the binary variable need to be considered 

during training, that is, the MSE loss functions of the two are 

calculated and superimposed separately. Assuming: ai, bi, ci 

respectively represent the predicted offset in the three 

coordinate axis directions between the patch center and the 

target acupoint center; a ī, b ī, c ī respectively represent the 

corresponding true offset values, then the following formula 

gives the loss function for medium distance: 
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In practice, whether the box in the acupoint image is an 

axially aligned one can be represented by a 6-dimensional 

vector (a, b, c, g, e, f), specifically, it contains the center point 

coordinates (a, b, c) and lengths (g, e, f) in three orthogonal 

directions; assuming hz1 and hz2 represent two boxes, then the 

following formula calculates their intersection over union 

(IOU): 

 

2

2
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IOU
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
 (3) 

 

As a result, the formula for the IOU loss function can be 

derived: 

 

1IOULoss IOU= −  (4) 

 

 
 

Figure 1. G1 and G2 

 

To allow loss functions to continue to operate even in cases 

there is no intersection between two boxes, the above formula 

needs to be updated to the formula below. Assuming: G1 

represents the distance of center points of the prediction box 

and the box of real situation (target box); G2 represents the 

length of the diagonal line of the minimum enclosing rectangle 

enclosed by the prediction box and the target box, see Figure 

1 for details, then there is: 

 
2
1

2
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G
Loss IOU

G
= − +  (5) 

 

Based on above formula, a term of length-width ratio is 

added, and the loss function formula is further updated to: 
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Assuming: fkl, ekl, gkl respectively represent the length of the 

target acupoint box on the three orthogonal axes; f, e, g 

respectively represent the length of the prediction box on the 

three orthogonal axes, then the specific parameters of the 

above formula can be calculated by the following formulas: 
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For patches sampled at short distances from a certain 

acupoint, the final loss function is: 
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3. ACUPOINT IMAGE REGISTRATION 

 

The traditional method of attaining the optimal 

transformation parameters through iterations of objective 

deformation function has a slow speed and can not meet real-

time requirements, while the deep learning-based visual image 

registration algorithm that requires supervision information 

has a poor performance in registration of acupoint images with 

large deformations, regarding these shortcomings, this paper 

built a multi-scale parallel FCN to perform non-rigid 

registration on acupoint images. For the purpose of reducing 

the need for supervision information, this paper built an end-

to-end registration model based on FCN algorithm; in order to 

capture feature information of different scales and improve the 

adaptability of the model to acupoint images with large 

deformations, a multi-scale parallel down-sampling module 

was set; moreover, a spatial pyramid of dilated convolutions 

was set to enlarge receptive field and better capture local and 

global information of the images; and an adaptive channel 

attention module was set to strengthen the model’s feature 

perception and expression abilities. Still, for the sake of 

restraining convergence and enabling the deep network model 

to learn more suitable deformation parameters, a loss function 

was set based on image dissimilarity metrics and 

regularization function. Figure 2 shows the flow of the 

registration algorithm. 

Through above design, the trained deep network model only 

needs one calculation to predict the deformed image, and it 

meets real-time requirements. Moreover, through techniques 

of multi-scale parallel downsampling, spatial pyramid of 

dilated convolutions, and adaptive channel attention, the 

model’s feature expression ability could be enhanced and the 

registration accuracy could be improved.  

Figure 3 shows a diagram of the multi-scale parallel 

downsampling module. After going through the processing of 

multi-scale parallel downsampling, the feature images contain 

many information of multiple scales which can hardly be 

processed by ordinary convolution at a time. In the meantime, 

the concentrated features of pooling layer used during 

downsampling might lead to partial information loss, thereby 

affecting the registration effect. The pyramid dilated 

convolution module uses dilated convolutions with different 

dilation factors to process multi-scale information. These 

dilated convolutions with different dilation factors have 

receptive fields with varying sizes, enabling the network to 
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capture feature information of different scales simultaneously. 

Assuming: km represents the m-th layer of receptive field; km-1 

represents the m-1-th layer of receptive field; SIi represents the 

step of the i-th layer of convolution or pooling; r represents the 

size of convolution kernel, then the following formula gives 

the method for calculating the receptive field: 

 

( )
1

1

1

1 *

m

m m i

i

k k r SI

−

+

=

= + +   (12) 

 

 
 

Figure 2. Flow of registration algorithm 

 

 
 

Figure 3. Diagram of multi-scale parallel downsampling 

module 

 

Figure 4 gives a diagram showing the attenuation of the 

spatial pyramid of dilated convolutions. After going through 

the two-step processing of multi-scale parallel sampling and 

pyramid dilated convolution, the number of acupoint images 

of with large deformation features is significantly higher than 

that with minor deformation features. The improvement of 

registration accuracy requires to extract more minor 

deformation features. The adaptive channel attention module 

can carry out adaptive channel attention calculations on 

feature images and realize adaptive weighting on minor 

deformation features of different channels, thereby enhancing 

the expression ability of these minor deformation features in 

the model and improving the non-rigid registration effect of 

acupoint images. 

 

 
 

Figure 4. Attenuation of the spatial pyramid of dilated 

convolutions 

 

Since the FCN used in this paper is relatively shallow and 

it’s difficult to fully exert the powerful channel screening 

function of channel attention mechanism, in this study, a 

trainable soft threshold with image similarity as the operator 

was set for the channel attention mechanism, which can assist 

the model in adaptively screening out the feature images that 

have a greater impact on the registration effect. By discarding 

feature images that are not of interest, the model can focus 

more on feature images that contribute more to the registration 

effect, in this way, model performance and registration 

accuracy could be improved. Specifically, when a feature 

image is judged to be of minor deformation, its weight is 

increased r(r>1); if it is judged to be of large deformation, its 

weight is decreased r-1(r>1), that is: 
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Figure 5. Structure of the constructed neural network 

 

This paper constructed the multi-scale parallel FCN based 

on the structure of ordinary FCN, and introduced multi-scale 

parallel downsampling, pyramid dilated convolution, adaptive 

channel attention, direction perception, and upsampling to 

improve the non-rigid registration performance of acupoint 

images. Figure 5 shows the structure of the constructed neural 

network. Wherein, the multi-scale parallel downsampling 

module attains feature images at different scales by reducing 

image size, thereby realizing extraction of features of multiple 

scales. The pyramid dilated convolution module further 

enhances the feature perception ability based on extracted 

multi-scale features. The adaptive channel attention module 

introduces attention mechanism into feature processing to 

highlight important features and improve model performance. 

570



 

The direction perception layer and the upsampling layer use a 

1×1×1 convolution layer to replace the fully-connected layer 

of CNN to perform linear prediction on the offset of pixels in 

X, Y and Z directions, also, the upsampling layer restores the 

resolution of original images to attain a dense vector 

deformation field. 

The primary objective of image registration is to find a 

spatial transform that can maximize the pixel-by-pixel 

relationship between a floating image FD and a fixed image 

GD. The loss function of the proposed model includes two 

parts: image dissimilarity metric and regular term. The main 

reason is that by measuring the differences between the two 

images, the loss function can guide the network to find a 

spatial transform that maximizes the pixel-by-pixel 

relationship between the floating image and the fixed image. 

Through the image dissimilarity metric, the loss function 

directly reflects the image registration effect, which can assist 

the network to better learn the correspondence between images. 

Introducing regular terms makes the attained dense 

displacement vector field have a spatial smoothness constraint, 

which not only ensures that the deformations are reasonable, 

but also avoids too complicated or unnatural deformations, 

thus the quality of registration results could be improved. 

Assuming: LOSS(·) represents the loss function, which 

consists of image dissimilarity metric FI(·) and regular term 

SI(·), δ represents the dense deformation vector field, λ 

represents the coefficient of regular term, then there is: 

 

( ) ( )( ) ( ), , ,LOSS FD GD FI FD GD SI   = +  (14) 

 

In medical image registration, the various dissimilarity 

metrics based on image intensity mean variance, cross 

correlation, or mutual information are greatly affected by 

image intensity distribution and contrast, so their robustness is 

generally unsatisfactory. Compared with global cross-

correlation methods, taking the local cross-correlation 

function as the loss function of image dissimilarities can 

exhibit better performance in capturing local image features. 

By minimizing the dissimilarity metric, the network can learn 

the spatial transform that makes the local areas of two images 

as consistent as possible, and this helps to capture and retain 

detail information of images with a smaller impact on image 

intensity distribution and contrast, thereby improving the 

registration accuracy. In case of acupoint image processing 

scenario, adopting the local correlation function of a 5×5×5 

window could get ideal results. 

Assuming: by minimizing the dissimilarity metric FI(·) 

between FD and GD, the model is trained, and the 

corresponding deformation field DF can be attained; JCH(·) 

represents the cross correlation function; the dissimilarity 

metric formula is as follows, wherein CC represents the cross 

correlation function, then there is: 

 

( )( ) ( )( ), 1 ,FI FD GD JCH FD GD = −  (15) 

 

In the training process, minimizing the dissimilarity metric 

FI(·) can make FD align with GD as much as possible, but the 

attained deformation field DF only has a poor spatial 

smoothness. Because the L2 regular term can prevent the 

model from over-fitting and improve the generalization ability 

of the model. In order to restrain over-fitting, this paper added 

a regular term into the loss function, namely the square sum of 

model parameters, to punish model parameters and prevent the 

model from being too complicated. The expression of the 

corresponding space regular term SI(ϕ) is given by the 

following formula: 

 

( ) ( )
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SI GD GD

m
 = −  (16) 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 
 

Weight values are the trade-off coefficients in loss functions 

between patches sampled at different distances from the 

acupoint. The error before optimization indicates the error 

level before adjusting the weight values, and the error after 

optimization indicates the error level after weight adjustment. 

The error data before and after the optimization of the 

positioning algorithm are given in Table 1. 

 

Table 1. Errors before and after positioning algorithm optimization 

 

Weight 
Error before 

optimization 

Error after 

optimization 
Weight 

Error before 

optimization 

Error after 

optimization 
Weight 

Error before 

optimization 

Error after 

optimization 

0.95 7.61E+01 7.61E+01 0.9 7.68E+01 7.61E+01 0.85 7.65E+01 7.69E+01 

0.8 7.54E+01 7.51E+01 0.75 7.51E+01 7.59E+01 0.7 7.59E+01 7.55E+01 

0.65 7.42E+01 7.41E+01 0.6 7.41E+01 7.48E+01 0.55 7.46E+01 7.45E+01 

0.5 7.34E+01 7.46E+01 0.45 7.39E+01 7.41E+01 0.4 7.38E+01 7.49E+01 

0.35 7.63E+01 7.81E+01 0.3 7.58E+01 7.53E+01 0.25 7.55E+01 7.68E+01 

0.2 7.62E+01 7.68E+01 0.15 7.62E+01 7.58E+01 0.1 7.61E+01 7.63E+01 

0.05 7.95E+01 7.89E+01 0.01 7.84E+01 7.79E+01    

 

First, by observing changes in the errors before and after 

optimization under each weight value, it can be seen that, 

when the weight value is relatively low (such as 0.01 or 0.05) 

or relatively high (such as 0.9 or 0.95), after optimization, the 

error values are large still, indicating that under these weight 

values, the trade-off between patches sampled at different 

distances from the acupoint may not be reasonable enough. 

Second, by observing weight values with smaller errors after 

optimization, it can be found that when the weight is 0.65, the 

error after optimization is the smallest, which is 7.41E+01, 

indicating that under this weight, the model has found an 

optimal trade-off point between patches sampled at different 

distances from the acupoint. To further verify this conclusion, 

data near other weight values (such as 0.6 and 0.7) was 

observed, and it’s found that under these weight values, 

although the error values after optimization are small still, they 

are larger than those under a weight of 0.65, and this has 

further proved the conclusion that 0.65 is the optimal weight. 

Therefore, this paper took 0.65 as the optimal weight to 

optimize the performance of the AIP algorithm. Figure 6 

compares the errors before and after optimization of the AIP 

algorithm, which can further verify the correctness of above 
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conclusion. 

Next, to analyze the acupoint registration errors of different 

algorithms, several reference algorithms were introduced for 

comparison, including two feature point-based methods, SIFT 

(Scale-invariant feature transform) and ORB (Oriented FAST 

and Rotated BRIEF), two region-based methods, MI (Mutual 

Information) and NCC (Normalized Cross-Correlation), a 

deep learning-based image registration algorithm (FCN), and 

the proposed model.  

According to the data in the Table 2, the acupoint 

registration errors of various algorithms vary on different 

samples, and an overall comparison could be made by 

calculating the average errors on all samples. The average 

error of SIFT algorithm is about 8.60; the ORB algorithm has 

an average error of about 4.14; this value for the MI algorithm 

is about 2.49; as for NCC algorithm and FCN model, the 

average error is 2.76 and 2.86, respectively; the average error 

of the proposed method is about 1.27. 

 
 

Figure 6. Error before and after optimization of the AIP 

algorithm 

 

Table 2. Acupoint registration errors of different registration algorithms (mm) 

 
Sample No. SIFT ORB MI NCC FCN The proposed method 

1 3.58(2.14) 1.27(0.83) 1.39(1.85) 1.23(1.95) 1.47(0.62) 1.05(0.66) 

2 4.16(3.62) 2.17(1.06) 1.25(1.36) 1.49(1.08) 1.38(0.67) 1.02(0.58) 

3 6.29(4.18) 3.62(1.27) 2.48(1.92) 1.63(1.07) 1.17(0.91) 1.07(0.72) 

4 9.15(4.27) 4.85(2.16) 3.27(1.84) 2.48(1.26) 2.36(1.69) 1.06(0.95) 

5 7.95(5.03) 3.62(2.59) 2.06(1.59) 1.25(2.37) 2.11(1.95) 1.17(1.14) 

6 11.29(6.24) 3.04(1.35) 2.64(1.41) 5.84(7.63) 2.74(2.88) 1.03(1.62) 

7 13.62(7.95) 4.69(2.57) 3.05(2.39) 3.18(3.27) 3.58(3.04) 1.48(1.58) 

8 15.38(9.26) 9.28(5.36) 5.28(3.47) 6.29(5.13) 8.59(7.24) 2.39(3.74) 

9 7.42(3.28) 3.47(1.02) 3.62(1.22) 2.03(1.69) 2.31(1.69) 1.05(0.86) 

10 7.11(6.14) 5.36(2.57) 3.59(2.48) 2.27(2.11) 2.48(2.57) 1.84(1.39) 

 

 

 

 
   

Figure 7. Accuracy curve  Figure 8. Loss value curve 

 

According to above results, the average error of the 

proposed method is the smallest, indicating that the proposed 

method outperforms other methods in terms of acupoint 

registration accuracy. Comparing with region-based methods 

(MI and NCC) and deep learning-based method (FCN), the 

feature point-based image registration algorithms (namely 

SIFT and ORB) have larger errors since they are not robust 

enough for local image features. Although the region-based 

methods (MI and NCC) and the deep learning-based method 

(FCN) have smaller errors, still, they are greater than the error 

of the proposed method. To sum up, the proposed method has 

a higher accuracy in acupoint registration than other reference 

algorithms, this is because the proposed method has 

effectively combined multi-scale parallel FCN with adaptive 

channel attention and other techniques, and the combined 

effect has improved the acupoint registration accuracy. 

During model training, the iteration was performed 100 

times and the loss value curve and accuracy curve were 

observed. In analysis, 5 key acupoints were selected for 

detailed discussions. As shown in Figures 7 and 8, the loss 

value curve decreases gradually during iterations, indicating 

that the prediction error of the model decreases constantly, and 

this reflects that the fitting degree of the model to the training 

data increased constantly during the learning process, which 

gradually narrowed down the difference between the predicted 

results and the actual results. This phenomenon indicates that 
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the model can effectively learn acupoint data during training, 

which is beneficial to accurately positioning the acupoints. In 

terms of the accuracy curve, the curve rises gradually, 

indicating that the model’s performance in recognizing 

acupoint positions is enhancing, after 100 iterations, the model 

exhibits a good performance in the accuracy of the fifth key 

acupoint, which has further verified the effectiveness of the 

model in the acupoint positioning task. Experiments show that 

the design of the proposed model has fully considered the 

characteristics of acupoint positioning task, and adopted loss 

functions, regularization method and optimization strategy 

that are suitable for the task, and this is conductive to 

accurately positioning the acupoints. During training, the 

model can learn features of acupoints from the large amounts 

of sample data, forming abstract expressions of the acupoints, 

thereby improving the prediction accuracy.  

Table 3 compares the positioning performance of different 

acupoints, as can be seen from the table, the proposed 

method’s performance differs in terms of IOU (intersection 

over union) and distance. At first, in terms of IOU indicators, 

the IOU Mean indicator and the IOU Worst indicator of the 

eighth acupoint are 83.62% and 69.38%, respectively, the 

performance is the best. The IOU Mean indicator and the IOU 

Worst indicator of the eighth acupoint are 51.27% and 31.42%, 

respectively, the performance is relatively poor. The values of 

other acupoints’ IOU indicators are between the two extreme 

values. By analyzing the Wall dist. (surface distance) indicator 

and the Centroid dist (centroid distance) indicator of the ninth 

acupoint, it’s found that the values of the two indicators are 

1.62 mm and 2.57 mm respectively, its positioning accuracy is 

the highest. As for the No. 4 acupoint, the values of the two 

indicators are 3.95 mm and 5.62 mm, respectively, the 

positioning accuracy is relatively low, and the values of the 

two indicators of other acupoints are all between the two 

extreme values. 

Thus, comprehensively analysis of the IOU and distance 

indicators suggest that, the proposed method show different 

performance in positioning different acupoints, but its overall 

performance is good. 

 

Table 3. Positioning of different acupoints 

 
Acupoint No. IOU[%]Mean IOU[%]Worst Wall dist.[mm] Centroid dist.[mm] 

1 62.15 41.62 2.16(3.48) 3.47(2.14) 

2 68.35 49.28 2.04(2.69) 4.69(2.57) 

3 51.27 31.42 2.84(2.04) 3.57(1.28) 

4 50.63 39.16 3.95(4.57) 5.62(3.15) 

5 59.68 38.02 2.85(1.31) 3.59(1.27) 

6 54.27 25.74 2.51(2.69) 4.16(2.31) 

7 65.28 45.16 2.34(2.74) 4.58(2.67) 

8 83.62 69.38 2.69(2.49) 3.42(1.95) 

9 67.49 47.51 1.62(1.04) 2.57(1.63) 

 

Table 4. Positioning Detection Rate (PDA) of acupoints 

 
Sample group No. PDA of acupoints 

1 92.15% 85.62% 83.29% 84.57% 86.59% 94.51% 97.02% 90.62% 

2 91.35% 91.24% 91.62% 91.35% 94.57% 91.48% 93.61% 96.38% 

3 90.41% 95.62% 94.57% 97.58% 93.62% 90.26% 94.58% 94.72% 

4 93.62% 95.82% 91.85% 96.31% 91.24% 93.58% 90.16% 93.62% 

5 94.57% 94.51% 93.69% 97.48% 90.15% 97.41% 94.58% 94.18% 

6 90.52% 93.62% 90.48% 95.62% 94.57% 97.58% 93.62% 94.51% 

 

Table 5. Acupoint pixel difference 

 
Sample group No. Acupoint pixel difference 

1 1.52 2.61 2.06 2.18 2.05 1.55 1.95 1.37 

2 1.39 1.35 1.59 1.52 1.24 1.04 1.38 1.58 

3 1.52 1.02 1.35 1.2 1.51 1.2 1.22 1.06 

4 1.47 1.41 1.24 1.41 1.33 1.1 1.14 1.62 

5 1.02 1.18 1.48 1.62 1.84 1.62 1.85 1.59 

6 1.63 1.36 1.41 1.35 1.59 1.52 1.24 1.14 

 

Tables 4 and 5 respectively give the detection rate and pixel 

accuracy error of six groups of acupoints in case of 500 epoch 

iterations. According to Table 4, the proposed method exhibits 

different accuracy of acupoint registration on different sample 

groups. At first, observation of the PDA indicator of different 

sample groups shows that the accuracy of the 5-th sample 

group is the best, the highest PDA reaches 97.41%, and the 

lowest PDA reaches 90.15%, the overall performance is good. 

In contrast, in terms of accuracy, the performance of the 

proposed method on Sample Group 1 is poor, although the 

highest PDA reaches 97.02%, the lowest PDA is only 83.29%. 

Values of the PDA indicator of other sample groups are all 

between these two extremes. Analysis shows that the proposed 

method performs differently in terms of acupoint registration 

accuracy on different sample groups, but the overall 

performance is good, which has further verified that the 

proposed method has certain advantages in terms of acupoint 

registration. 

According to Table 5, it’s known that the proposed method 

has some differences in acupoint registration accuracy on 

different sample groups. At first, by observing the acupoint 

pixel difference of each sample group, it can be seen that the 

acupoint registration accuracy of the second sample group is 

the best, the highest pixel difference is 1.59, and the lowest 
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pixel difference is 1.04, the overall performance is good. In 

contrast, the acupoint registration accuracy of the fifth sample 

group is the worst, although its lowest pixel difference is 1.85, 

its highest pixel difference reaches 1.02. Values of this 

acupoint pixel difference indicator of other sample groups are 

all between these two extremes. Comprehensive analysis of 

the acupoint pixel difference indicator of each sample group 

suggests that, the proposed method shows different acupoint 

registration accuracy on different sample groups, but its 

overall performance is satisfactory. 

 

 

5. CONCLUSION 

 

This paper studied a novel AIP algorithm based on image 

registration. The second chapter proposed the AIP algorithm 

based on CNN which combines the prior information of 

acupoint positions in visual images with 3D CNN and can give 

high accurate positioning results under unfavorable conditions 

such as image noise, illumination change, or occlusion. The 

third chapter constructed a multi-scale parallel FCN that 

introduces multiple techniques, including multi-scale parallel 

downsampling, spatial pyramid of dilated convolutions, 

adaptive channel attention mechanism, direction perception, 

and upsampling, aiming at improving the model’s 

performance in non-rigid registration of the visual images of 

massage acupoints. Then, the ideal weight was determined 

based on the error value before and after the optimization of 

the positioning algorithm, and analysis of the acupoint 

registration error of different algorithms showed that the 

average error of the proposed algorithm is the smallest, 

indicating that the proposed algorithm outperformed others in 

terms of acupoint registration performance. After that, by 

observing the loss value curve and accuracy curve of the 

proposed model during training, we can see that the proposed 

model can effectively learn the acupoint data during training, 

which is conductive to realizing accurate acupoint positioning. 

At last, this paper gave the positioning detection rate and pixel 

accuracy difference of six groups of samples when the 

iteration reaches 500 epochs, and the results indicated that the 

proposed method showed different positioning performance 

on different acupoints but its overall performance was good.  
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